123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cfft_f32.c
- * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- #include "arm_common_tables.h"
- extern void arm_radix8_butterfly_f32(
- float32_t * pSrc,
- uint16_t fftLen,
- const float32_t * pCoef,
- uint16_t twidCoefModifier);
- extern void arm_bitreversal_32(
- uint32_t * pSrc,
- const uint16_t bitRevLen,
- const uint16_t * pBitRevTable);
- /**
- * @ingroup groupTransforms
- */
- /**
- * @defgroup ComplexFFT Complex FFT Functions
- *
- * \par
- * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
- * Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
- * than the DFT, especially for long lengths.
- * The algorithms described in this section
- * operate on complex data. A separate set of functions is devoted to handling
- * of real sequences.
- * \par
- * There are separate algorithms for handling floating-point, Q15, and Q31 data
- * types. The algorithms available for each data type are described next.
- * \par
- * The FFT functions operate in-place. That is, the array holding the input data
- * will also be used to hold the corresponding result. The input data is complex
- * and contains <code>2*fftLen</code> interleaved values as shown below.
- * <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
- * The FFT result will be contained in the same array and the frequency domain
- * values will have the same interleaving.
- *
- * \par Floating-point
- * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
- * stages are performed along with a single radix-2 or radix-4 stage, as needed.
- * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
- * a different twiddle factor table.
- * \par
- * The function uses the standard FFT definition and output values may grow by a
- * factor of <code>fftLen</code> when computing the forward transform. The
- * inverse transform includes a scale of <code>1/fftLen</code> as part of the
- * calculation and this matches the textbook definition of the inverse FFT.
- * \par
- * Pre-initialized data structures containing twiddle factors and bit reversal
- * tables are provided and defined in <code>arm_const_structs.h</code>. Include
- * this header in your function and then pass one of the constant structures as
- * an argument to arm_cfft_f32. For example:
- * \par
- * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
- * \par
- * computes a 64-point inverse complex FFT including bit reversal.
- * The data structures are treated as constant data and not modified during the
- * calculation. The same data structure can be reused for multiple transforms
- * including mixing forward and inverse transforms.
- * \par
- * Earlier releases of the library provided separate radix-2 and radix-4
- * algorithms that operated on floating-point data. These functions are still
- * provided but are deprecated. The older functions are slower and less general
- * than the new functions.
- * \par
- * An example of initialization of the constants for the arm_cfft_f32 function follows:
- * \code
- * const static arm_cfft_instance_f32 *S;
- * ...
- * switch (length) {
- * case 16:
- * S = &arm_cfft_sR_f32_len16;
- * break;
- * case 32:
- * S = &arm_cfft_sR_f32_len32;
- * break;
- * case 64:
- * S = &arm_cfft_sR_f32_len64;
- * break;
- * case 128:
- * S = &arm_cfft_sR_f32_len128;
- * break;
- * case 256:
- * S = &arm_cfft_sR_f32_len256;
- * break;
- * case 512:
- * S = &arm_cfft_sR_f32_len512;
- * break;
- * case 1024:
- * S = &arm_cfft_sR_f32_len1024;
- * break;
- * case 2048:
- * S = &arm_cfft_sR_f32_len2048;
- * break;
- * case 4096:
- * S = &arm_cfft_sR_f32_len4096;
- * break;
- * }
- * \endcode
- * \par Q15 and Q31
- * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
- * stages are performed along with a single radix-2 stage, as needed.
- * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
- * a different twiddle factor table.
- * \par
- * The function uses the standard FFT definition and output values may grow by a
- * factor of <code>fftLen</code> when computing the forward transform. The
- * inverse transform includes a scale of <code>1/fftLen</code> as part of the
- * calculation and this matches the textbook definition of the inverse FFT.
- * \par
- * Pre-initialized data structures containing twiddle factors and bit reversal
- * tables are provided and defined in <code>arm_const_structs.h</code>. Include
- * this header in your function and then pass one of the constant structures as
- * an argument to arm_cfft_q31. For example:
- * \par
- * <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
- * \par
- * computes a 64-point inverse complex FFT including bit reversal.
- * The data structures are treated as constant data and not modified during the
- * calculation. The same data structure can be reused for multiple transforms
- * including mixing forward and inverse transforms.
- * \par
- * Earlier releases of the library provided separate radix-2 and radix-4
- * algorithms that operated on floating-point data. These functions are still
- * provided but are deprecated. The older functions are slower and less general
- * than the new functions.
- * \par
- * An example of initialization of the constants for the arm_cfft_q31 function follows:
- * \code
- * const static arm_cfft_instance_q31 *S;
- * ...
- * switch (length) {
- * case 16:
- * S = &arm_cfft_sR_q31_len16;
- * break;
- * case 32:
- * S = &arm_cfft_sR_q31_len32;
- * break;
- * case 64:
- * S = &arm_cfft_sR_q31_len64;
- * break;
- * case 128:
- * S = &arm_cfft_sR_q31_len128;
- * break;
- * case 256:
- * S = &arm_cfft_sR_q31_len256;
- * break;
- * case 512:
- * S = &arm_cfft_sR_q31_len512;
- * break;
- * case 1024:
- * S = &arm_cfft_sR_q31_len1024;
- * break;
- * case 2048:
- * S = &arm_cfft_sR_q31_len2048;
- * break;
- * case 4096:
- * S = &arm_cfft_sR_q31_len4096;
- * break;
- * }
- * \endcode
- *
- */
- void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
- {
- uint32_t L = S->fftLen;
- float32_t * pCol1, * pCol2, * pMid1, * pMid2;
- float32_t * p2 = p1 + L;
- const float32_t * tw = (float32_t *) S->pTwiddle;
- float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
- float32_t m0, m1, m2, m3;
- uint32_t l;
- pCol1 = p1;
- pCol2 = p2;
- // Define new length
- L >>= 1;
- // Initialize mid pointers
- pMid1 = p1 + L;
- pMid2 = p2 + L;
- // do two dot Fourier transform
- for ( l = L >> 2; l > 0; l-- )
- {
- t1[0] = p1[0];
- t1[1] = p1[1];
- t1[2] = p1[2];
- t1[3] = p1[3];
- t2[0] = p2[0];
- t2[1] = p2[1];
- t2[2] = p2[2];
- t2[3] = p2[3];
- t3[0] = pMid1[0];
- t3[1] = pMid1[1];
- t3[2] = pMid1[2];
- t3[3] = pMid1[3];
- t4[0] = pMid2[0];
- t4[1] = pMid2[1];
- t4[2] = pMid2[2];
- t4[3] = pMid2[3];
- *p1++ = t1[0] + t2[0];
- *p1++ = t1[1] + t2[1];
- *p1++ = t1[2] + t2[2];
- *p1++ = t1[3] + t2[3]; // col 1
- t2[0] = t1[0] - t2[0];
- t2[1] = t1[1] - t2[1];
- t2[2] = t1[2] - t2[2];
- t2[3] = t1[3] - t2[3]; // for col 2
- *pMid1++ = t3[0] + t4[0];
- *pMid1++ = t3[1] + t4[1];
- *pMid1++ = t3[2] + t4[2];
- *pMid1++ = t3[3] + t4[3]; // col 1
- t4[0] = t4[0] - t3[0];
- t4[1] = t4[1] - t3[1];
- t4[2] = t4[2] - t3[2];
- t4[3] = t4[3] - t3[3]; // for col 2
- twR = *tw++;
- twI = *tw++;
- // multiply by twiddle factors
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- // R = R * Tr - I * Ti
- *p2++ = m0 + m1;
- // I = I * Tr + R * Ti
- *p2++ = m2 - m3;
- // use vertical symmetry
- // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i
- m0 = t4[0] * twI;
- m1 = t4[1] * twR;
- m2 = t4[1] * twI;
- m3 = t4[0] * twR;
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
- twR = *tw++;
- twI = *tw++;
- m0 = t2[2] * twR;
- m1 = t2[3] * twI;
- m2 = t2[3] * twR;
- m3 = t2[2] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- m0 = t4[2] * twI;
- m1 = t4[3] * twR;
- m2 = t4[3] * twI;
- m3 = t4[2] * twR;
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
- }
- // first col
- arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U);
- // second col
- arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U);
- }
- void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
- {
- uint32_t L = S->fftLen >> 1;
- float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
- const float32_t *tw2, *tw3, *tw4;
- float32_t * p2 = p1 + L;
- float32_t * p3 = p2 + L;
- float32_t * p4 = p3 + L;
- float32_t t2[4], t3[4], t4[4], twR, twI;
- float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
- float32_t m0, m1, m2, m3;
- uint32_t l, twMod2, twMod3, twMod4;
- pCol1 = p1; // points to real values by default
- pCol2 = p2;
- pCol3 = p3;
- pCol4 = p4;
- pEnd1 = p2 - 1; // points to imaginary values by default
- pEnd2 = p3 - 1;
- pEnd3 = p4 - 1;
- pEnd4 = pEnd3 + L;
- tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
- L >>= 1;
- // do four dot Fourier transform
- twMod2 = 2;
- twMod3 = 4;
- twMod4 = 6;
- // TOP
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- // col 2
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- // Twiddle factors are ones
- *p2++ = t2[0];
- *p2++ = t2[1];
- *p3++ = t3[0];
- *p3++ = t3[1];
- *p4++ = t4[0];
- *p4++ = t4[1];
- tw2 += twMod2;
- tw3 += twMod3;
- tw4 += twMod4;
- for (l = (L - 2) >> 1; l > 0; l-- )
- {
- // TOP
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- // col 2
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1 - top
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- // BOTTOM
- p1ap3_1 = pEnd1[-1] + pEnd3[-1];
- p1sp3_1 = pEnd1[-1] - pEnd3[-1];
- p1ap3_0 = pEnd1[0] + pEnd3[0];
- p1sp3_0 = pEnd1[0] - pEnd3[0];
- // col 2
- t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
- t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
- // col 3
- t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
- t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0];
- // col 4
- t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1;
- t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
- // col 1 - Bottom
- *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
- *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
- // COL 2
- // read twiddle factors
- twR = *tw2++;
- twI = *tw2++;
- // multiply by twiddle factors
- // let Z1 = a + i(b), Z2 = c + i(d)
- // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d)
- // Top
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- // use vertical symmetry col 2
- // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i
- // Bottom
- m0 = t2[3] * twI;
- m1 = t2[2] * twR;
- m2 = t2[2] * twI;
- m3 = t2[3] * twR;
- *pEnd2-- = m0 - m1;
- *pEnd2-- = m2 + m3;
- // COL 3
- twR = tw3[0];
- twI = tw3[1];
- tw3 += twMod3;
- // Top
- m0 = t3[0] * twR;
- m1 = t3[1] * twI;
- m2 = t3[1] * twR;
- m3 = t3[0] * twI;
- *p3++ = m0 + m1;
- *p3++ = m2 - m3;
- // use vertical symmetry col 3
- // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i
- // Bottom
- m0 = -t3[3] * twR;
- m1 = t3[2] * twI;
- m2 = t3[2] * twR;
- m3 = t3[3] * twI;
- *pEnd3-- = m0 - m1;
- *pEnd3-- = m3 - m2;
- // COL 4
- twR = tw4[0];
- twI = tw4[1];
- tw4 += twMod4;
- // Top
- m0 = t4[0] * twR;
- m1 = t4[1] * twI;
- m2 = t4[1] * twR;
- m3 = t4[0] * twI;
- *p4++ = m0 + m1;
- *p4++ = m2 - m3;
- // use vertical symmetry col 4
- // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i
- // Bottom
- m0 = t4[3] * twI;
- m1 = t4[2] * twR;
- m2 = t4[2] * twI;
- m3 = t4[3] * twR;
- *pEnd4-- = m0 - m1;
- *pEnd4-- = m2 + m3;
- }
- //MIDDLE
- // Twiddle factors are
- // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- // col 2
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1 - Top
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- // COL 2
- twR = tw2[0];
- twI = tw2[1];
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- // COL 3
- twR = tw3[0];
- twI = tw3[1];
- m0 = t3[0] * twR;
- m1 = t3[1] * twI;
- m2 = t3[1] * twR;
- m3 = t3[0] * twI;
- *p3++ = m0 + m1;
- *p3++ = m2 - m3;
- // COL 4
- twR = tw4[0];
- twI = tw4[1];
- m0 = t4[0] * twR;
- m1 = t4[1] * twI;
- m2 = t4[1] * twR;
- m3 = t4[0] * twI;
- *p4++ = m0 + m1;
- *p4++ = m2 - m3;
- // first col
- arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U);
- // second col
- arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U);
- // third col
- arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U);
- // fourth col
- arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U);
- }
- /**
- * @addtogroup ComplexFFT
- * @{
- */
- /**
- * @details
- * @brief Processing function for the floating-point complex FFT.
- * @param[in] *S points to an instance of the floating-point CFFT structure.
- * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
- * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return none.
- */
- void arm_cfft_f32(
- const arm_cfft_instance_f32 * S,
- float32_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag)
- {
- uint32_t L = S->fftLen, l;
- float32_t invL, * pSrc;
- if (ifftFlag == 1U)
- {
- /* Conjugate input data */
- pSrc = p1 + 1;
- for(l=0; l<L; l++)
- {
- *pSrc = -*pSrc;
- pSrc += 2;
- }
- }
- switch (L)
- {
- case 16:
- case 128:
- case 1024:
- arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 32:
- case 256:
- case 2048:
- arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 64:
- case 512:
- case 4096:
- arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
- break;
- }
- if ( bitReverseFlag )
- arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
- if (ifftFlag == 1U)
- {
- invL = 1.0f/(float32_t)L;
- /* Conjugate and scale output data */
- pSrc = p1;
- for(l=0; l<L; l++)
- {
- *pSrc++ *= invL ;
- *pSrc = -(*pSrc) * invL;
- pSrc++;
- }
- }
- }
- /**
- * @} end of ComplexFFT group
- */
|