123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- /*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_convolve_HWC_q7_basic.c
- * Description: Q7 version of convolution
- *
- * $Date: 17. January 2018
- * $Revision: V.1.0.0
- *
- * Target Processor: Cortex-M cores
- *
- * -------------------------------------------------------------------- */
- #include "arm_math.h"
- #include "arm_nnfunctions.h"
- /**
- * @ingroup groupNN
- */
- /**
- * @addtogroup NNConv
- * @{
- */
- /**
- * @brief Basic Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- *
- * <b>Buffer size:</b>
- *
- * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
- *
- * bufferB size: 0
- *
- * This basic version is designed to work for any input tensor and weight
- * dimension.
- */
- arm_status
- arm_convolve_HWC_q7_basic(const q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB)
- {
- #if defined (ARM_MATH_DSP)
- /* Run the following code for Cortex-M4 and Cortex-M7 */
- int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
- /*
- * Here we use bufferA as q15_t internally as computation are done with q15_t level
- * im2col are done to output in q15_t format from q7_t input
- */
- q15_t *pBuffer = bufferA;
- q7_t *pOut = Im_out;
- /* This part implements the im2col function */
- for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
- {
- for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
- {
- for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
- {
- for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
- {
- if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
- {
- /* Filling 0 for out-of-bound paddings */
- /* arm_fill_q15(0, pBuffer, ch_im_in); */
- memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
- } else
- {
- /* Copying the pixel data to column */
- arm_q7_to_q15_no_shift((q7_t *)
- Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
- }
- pBuffer += ch_im_in;
- }
- }
- /* Computation is filed for every 2 columns */
- if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
- {
- pOut =
- arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
- ch_im_out,
- ch_im_in *
- dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
- /* counter reset */
- pBuffer = bufferA;
- }
- }
- }
- /* left-over because odd number of output pixels */
- if (pBuffer != bufferA)
- {
- const q7_t *pA = wt;
- int i;
- for (i = 0; i < ch_im_out; i++)
- {
- /* Load the accumulator with bias first */
- q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
- /* Point to the beging of the im2col buffer */
- q15_t *pB = bufferA;
- /* Each time it process 4 entries */
- uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
- while (colCnt)
- {
- q31_t inA1, inA2;
- q31_t inB1, inB2;
- pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
- inB1 = *__SIMD32(pB)++;
- sum = __SMLAD(inA1, inB1, sum);
- inB2 = *__SIMD32(pB)++;
- sum = __SMLAD(inA2, inB2, sum);
- colCnt--;
- }
- colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
- while (colCnt)
- {
- q7_t inA1 = *pA++;
- q15_t inB1 = *pB++;
- sum += inA1 * inB1;
- colCnt--;
- }
- *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
- }
- }
- #else
- /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
- uint16_t i, j, k, l, m, n;
- int conv_out;
- signed char in_row, in_col;
- for (i = 0; i < ch_im_out; i++)
- {
- for (j = 0; j < dim_im_out; j++)
- {
- for (k = 0; k < dim_im_out; k++)
- {
- conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
- for (m = 0; m < dim_kernel; m++)
- {
- for (n = 0; n < dim_kernel; n++)
- {
- // if-for implementation
- in_row = stride * j + m - padding;
- in_col = stride * k + n - padding;
- if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
- {
- for (l = 0; l < ch_im_in; l++)
- {
- conv_out +=
- Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
- l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
- n) * ch_im_in + l];
- }
- }
- }
- }
- Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
- }
- }
- }
- #endif /* ARM_MATH_DSP */
- /* Return to application */
- return ARM_MATH_SUCCESS;
- }
- /**
- * @} end of NNConv group
- */
|