Yi b1fea5b3bb project: 添加jsonpb 函数 1 년 전
..
is b1fea5b3bb project: 添加jsonpb 函数 1 년 전
README.md ba241127c1 project: 接口加入参数校验 1 년 전
error.go ba241127c1 project: 接口加入参数校验 1 년 전
error_test.go ba241127c1 project: 接口加入参数校验 1 년 전
example_test.go ba241127c1 project: 接口加入参数校验 1 년 전
interface.go ba241127c1 project: 接口加入参数校验 1 년 전
map.go ba241127c1 project: 接口加入参数校验 1 년 전
map_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_absent.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_absent_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_date.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_date_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_each.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_each_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_in.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_in_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_length.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_length_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_match.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_match_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_minmax.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_minmax_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_not_in.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_not_in_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_not_nil.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_not_nil_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_required.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_required_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_strings.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_strings_test.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_when.go ba241127c1 project: 接口加入参数校验 1 년 전
rule_when_test.go ba241127c1 project: 接口加入参数校验 1 년 전
struct.go ba241127c1 project: 接口加入参数校验 1 년 전
struct_test.go ba241127c1 project: 接口加入参数校验 1 년 전
util.go ba241127c1 project: 接口加入参数校验 1 년 전
util_test.go ba241127c1 project: 接口加入参数校验 1 년 전
validation.go ba241127c1 project: 接口加入参数校验 1 년 전
validation_test.go ba241127c1 project: 接口加入参数校验 1 년 전

README.md

valid 校验 library

Validating a Simple Value

For a simple value, such as a string or an integer, you may use valid.Validate() to validate it. For example,

package main

import (
	"fmt"

	"kpt-tmr-group/pkg/valid"
	"kpt-tmr-group/pkg/valid/is"
)

func main() {
	data := "example"
	err := valid.Validate(data,
		valid.Required,       // not empty
		valid.Length(5, 100), // length between 5 and 100
		is.URL,                    // is a valid URL
	)
	fmt.Println(err)
	// Output:
	// must be a valid URL
}

The method valid.Validate() will run through the rules in the order that they are listed. If a rule fails the validation, the method will return the corresponding error and skip the rest of the rules. The method will return nil if the value passes all validation rules.

Validating a Struct

For a struct value, you usually want to check if its fields are valid. For example, in a RESTful application, you may unmarshal the request payload into a struct and then validate the struct fields. If one or multiple fields are invalid, you may want to get an error describing which fields are invalid. You can use valid.ValidateStruct() to achieve this purpose. A single struct can have rules for multiple fields, and a field can be associated with multiple rules. For example,

type Address struct {
	Street string
	City   string
	State  string
	Zip    string
}

func (a Address) Validate() error {
	return valid.ValidateStruct(&a,
		// Street cannot be empty, and the length must between 5 and 50
		valid.Field(&a.Street, valid.Required, valid.Length(5, 50)),
		// City cannot be empty, and the length must between 5 and 50
		valid.Field(&a.City, valid.Required, valid.Length(5, 50)),
		// State cannot be empty, and must be a string consisting of two letters in upper case
		valid.Field(&a.State, valid.Required, valid.Match(regexp.MustCompile("^[A-Z]{2}$"))),
		// State cannot be empty, and must be a string consisting of five digits
		valid.Field(&a.Zip, valid.Required, valid.Match(regexp.MustCompile("^[0-9]{5}$"))),
	)
}

a := Address{
    Street: "123",
    City:   "Unknown",
    State:  "Virginia",
    Zip:    "12345",
}

err := a.Validate()
fmt.Println(err)
// Output:
// Street: the length must be between 5 and 50; State: must be in a valid format.

Note that when calling valid.ValidateStruct to validate a struct, you should pass to the method a pointer to the struct instead of the struct itself. Similarly, when calling valid.Field to specify the rules for a struct field, you should use a pointer to the struct field.

When the struct validation is performed, the fields are validated in the order they are specified in ValidateStruct. And when each field is validated, its rules are also evaluated in the order they are associated with the field. If a rule fails, an error is recorded for that field, and the validation will continue with the next field.

Validating a Map

Sometimes you might need to work with dynamic data stored in maps rather than a typed model. You can use valid.Map() in this situation. A single map can have rules for multiple keys, and a key can be associated with multiple rules. For example,

c := map[string]interface{}{
	"Name":  "Qiang Xue",
	"Email": "q",
	"Address": map[string]interface{}{
		"Street": "123",
		"City":   "Unknown",
		"State":  "Virginia",
		"Zip":    "12345",
	},
}

err := valid.Validate(c,
	valid.Map(
		// Name cannot be empty, and the length must be between 5 and 20.
		valid.Key("Name", valid.Required, valid.Length(5, 20)),
		// Email cannot be empty and should be in a valid email format.
		valid.Key("Email", valid.Required, is.Email),
		// Validate Address using its own validation rules
		valid.Key("Address", valid.Map(
			// Street cannot be empty, and the length must between 5 and 50
			valid.Key("Street", valid.Required, valid.Length(5, 50)),
			// City cannot be empty, and the length must between 5 and 50
			valid.Key("City", valid.Required, valid.Length(5, 50)),
			// State cannot be empty, and must be a string consisting of two letters in upper case
			valid.Key("State", valid.Required, valid.Match(regexp.MustCompile("^[A-Z]{2}$"))),
			// State cannot be empty, and must be a string consisting of five digits
			valid.Key("Zip", valid.Required, valid.Match(regexp.MustCompile("^[0-9]{5}$"))),
		)),
	),
)
fmt.Println(err)
// Output:
// Address: (State: must be in a valid format; Street: the length must be between 5 and 50.); Email: must be a valid email address.

When the map validation is performed, the keys are validated in the order they are specified in Map. And when each key is validated, its rules are also evaluated in the order they are associated with the key. If a rule fails, an error is recorded for that key, and the validation will continue with the next key.

Validation Errors

The valid.ValidateStruct method returns validation errors found in struct fields in terms of valid.Errors which is a map of fields and their corresponding errors. Nil is returned if validation passes.

By default, valid.Errors uses the struct tags named json to determine what names should be used to represent the invalid fields. The type also implements the json.Marshaler interface so that it can be marshaled into a proper JSON object. For example,

type Address struct {
	Street string `json:"street"`
	City   string `json:"city"`
	State  string `json:"state"`
	Zip    string `json:"zip"`
}

// ...perform validation here...

err := a.Validate()
b, _ := json.Marshal(err)
fmt.Println(string(b))
// Output:
// {"street":"the length must be between 5 and 50","state":"must be in a valid format"}

You may modify valid.ErrorTag to use a different struct tag name.

If you do not like the magic that ValidateStruct determines error keys based on struct field names or corresponding tag values, you may use the following alternative approach:

c := Customer{
	Name:  "Qiang Xue",
	Email: "q",
	Address: Address{
		State:  "Virginia",
	},
}

err := valid.Errors{
	"name": valid.Validate(c.Name, valid.Required, valid.Length(5, 20)),
	"email": valid.Validate(c.Name, valid.Required, is.Email),
	"zip": valid.Validate(c.Address.Zip, valid.Required, valid.Match(regexp.MustCompile("^[0-9]{5}$"))),
}.Filter()
fmt.Println(err)
// Output:
// email: must be a valid email address; zip: cannot be blank.

In the above example, we build a valid.Errors by a list of names and the corresponding validation results. At the end we call Errors.Filter() to remove from Errors all nils which correspond to those successful validation results. The method will return nil if Errors is empty.

The above approach is very flexible as it allows you to freely build up your validation error structure. You can use it to validate both struct and non-struct values. Compared to using ValidateStruct to validate a struct, it has the drawback that you have to redundantly specify the error keys while ValidateStruct can automatically find them out.

Internal Errors

Internal errors are different from validation errors in that internal errors are caused by malfunctioning code (e.g. a validator making a remote call to validate some data when the remote service is down) rather than the data being validated. When an internal error happens during data validation, you may allow the user to resubmit the same data to perform validation again, hoping the program resumes functioning. On the other hand, if data validation fails due to data error, the user should generally not resubmit the same data again.

To differentiate internal errors from validation errors, when an internal error occurs in a validator, wrap it into valid.InternalError by calling valid.NewInternalError(). The user of the validator can then check if a returned error is an internal error or not. For example,

if err := a.Validate(); err != nil {
	if e, ok := err.(valid.InternalError); ok {
		// an internal error happened
		fmt.Println(e.InternalError())
	}
}

Validatable Types

A type is validatable if it implements the valid.Validatable interface.

When valid.Validate is used to validate a validatable value, if it does not find any error with the given validation rules, it will further call the value's Validate() method.

Similarly, when valid.ValidateStruct is validating a struct field whose type is validatable, it will call the field's Validate method after it passes the listed rules.

Note: When implementing valid.Validatable, do not call valid.Validate() to validate the value in its original type because this will cause infinite loops. For example, if you define a new type MyString as string and implement valid.Validatable for MyString, within the Validate() function you should cast the value to string first before calling valid.Validate() to validate it.

In the following example, the Address field of Customer is validatable because Address implements valid.Validatable. Therefore, when validating a Customer struct with valid.ValidateStruct, validation will "dive" into the Address field.

type Customer struct {
	Name    string
	Gender  string
	Email   string
	Address Address
}

func (c Customer) Validate() error {
	return valid.ValidateStruct(&c,
		// Name cannot be empty, and the length must be between 5 and 20.
		valid.Field(&c.Name, valid.Required, valid.Length(5, 20)),
		// Gender is optional, and should be either "Female" or "Male".
		valid.Field(&c.Gender, valid.In("Female", "Male")),
		// Email cannot be empty and should be in a valid email format.
		valid.Field(&c.Email, valid.Required, is.Email),
		// Validate Address using its own validation rules
		valid.Field(&c.Address),
	)
}

c := Customer{
	Name:  "Qiang Xue",
	Email: "q",
	Address: Address{
		Street: "123 Main Street",
		City:   "Unknown",
		State:  "Virginia",
		Zip:    "12345",
	},
}

err := c.Validate()
fmt.Println(err)
// Output:
// Address: (State: must be in a valid format.); Email: must be a valid email address.

Sometimes, you may want to skip the invocation of a type's Validate method. To do so, simply associate a valid.Skip rule with the value being validated.

Maps/Slices/Arrays of Validatables

When validating an iterable (map, slice, or array), whose element type implements the valid.Validatable interface, the valid.Validate method will call the Validate method of every non-nil element. The validation errors of the elements will be returned as valid.Errors which maps the keys of the invalid elements to their corresponding validation errors. For example,

addresses := []Address{
	Address{State: "MD", Zip: "12345"},
	Address{Street: "123 Main St", City: "Vienna", State: "VA", Zip: "12345"},
	Address{City: "Unknown", State: "NC", Zip: "123"},
}
err := valid.Validate(addresses)
fmt.Println(err)
// Output:
// 0: (City: cannot be blank; Street: cannot be blank.); 2: (Street: cannot be blank; Zip: must be in a valid format.).

When using valid.ValidateStruct to validate a struct, the above validation procedure also applies to those struct fields which are map/slices/arrays of validatables.

Each

The Each validation rule allows you to apply a set of rules to each element of an array, slice, or map.

type Customer struct {
    Name      string
    Emails    []string
}

func (c Customer) Validate() error {
    return valid.ValidateStruct(&c,
        // Name cannot be empty, and the length must be between 5 and 20.
		valid.Field(&c.Name, valid.Required, valid.Length(5, 20)),
		// Emails are optional, but if given must be valid.
		valid.Field(&c.Emails, valid.Each(is.Email)),
    )
}

c := Customer{
    Name:   "Qiang Xue",
    Emails: []Email{
        "valid@example.com",
        "invalid",
    },
}

err := c.Validate()
fmt.Println(err)
// Output:
// Emails: (1: must be a valid email address.).

Pointers

When a value being validated is a pointer, most validation rules will validate the actual value pointed to by the pointer. If the pointer is nil, these rules will skip the valid.

An exception is the valid.Required and valid.NotNil rules. When a pointer is nil, they will report a validation error.

Types Implementing sql.Valuer

If a data type implements the sql.Valuer interface (e.g. sql.NullString), the built-in validation rules will handle it properly. In particular, when a rule is validating such data, it will call the Value() method and validate the returned value instead.

Required vs. Not Nil

When validating input values, there are two different scenarios about checking if input values are provided or not.

In the first scenario, an input value is considered missing if it is not entered or it is entered as a zero value (e.g. an empty string, a zero integer). You can use the valid.Required rule in this case.

In the second scenario, an input value is considered missing only if it is not entered. A pointer field is usually used in this case so that you can detect if a value is entered or not by checking if the pointer is nil or not. You can use the valid.NotNil rule to ensure a value is entered (even if it is a zero value).

Embedded Structs

The valid.ValidateStruct method will properly validate a struct that contains embedded structs. In particular, the fields of an embedded struct are treated as if they belong directly to the containing struct. For example,

type Employee struct {
	Name string
}

type Manager struct {
	Employee
	Level int
}

m := Manager{}
err := valid.ValidateStruct(&m,
	valid.Field(&m.Name, valid.Required),
	valid.Field(&m.Level, valid.Required),
)
fmt.Println(err)
// Output:
// Level: cannot be blank; Name: cannot be blank.

In the above code, we use &m.Name to specify the validation of the Name field of the embedded struct Employee. And the validation error uses Name as the key for the error associated with the Name field as if Name a field directly belonging to Manager.

If Employee implements the valid.Validatable interface, we can also use the following code to validate Manager, which generates the same validation result:

func (e Employee) Validate() error {
	return valid.ValidateStruct(&e,
		valid.Field(&e.Name, valid.Required),
	)
}

err := valid.ValidateStruct(&m,
	valid.Field(&m.Employee),
	valid.Field(&m.Level, valid.Required),
)
fmt.Println(err)
// Output:
// Level: cannot be blank; Name: cannot be blank.

Conditional Validation

Sometimes, we may want to validate a value only when certain condition is met. For example, we want to ensure the unit struct field is not empty only when the quantity field is not empty; or we may want to ensure either email or phone is provided. The so-called conditional validation can be achieved with the help of valid.When. The following code implements the aforementioned examples:

result := valid.ValidateStruct(&a,
    valid.Field(&a.Unit, valid.When(a.Quantity != "", valid.Required).Else(valid.Nil)),
    valid.Field(&a.Phone, valid.When(a.Email == "", valid.Required.Error('Either phone or Email is required.')),
    valid.Field(&a.Email, valid.When(a.Phone == "", valid.Required.Error('Either phone or Email is required.')),
)

Note that valid.When and valid.When.Else can take a list of validation rules. These rules will be executed only when the condition is true (When) or false (Else).

The above code can also be simplified using the shortcut valid.Required.When:

result := valid.ValidateStruct(&a,
    valid.Field(&a.Unit, valid.Required.When(a.Quantity != ""), valid.Nil.When(a.Quantity == "")),
    valid.Field(&a.Phone, valid.Required.When(a.Email == "").Error('Either phone or Email is required.')),
    valid.Field(&a.Email, valid.Required.When(a.Phone == "").Error('Either phone or Email is required.')),
)

Customizing Error Messages

All built-in validation rules allow you to customize their error messages. To do so, simply call the Error() method of the rules. For example,

data := "2123"
err := valid.Validate(data,
	valid.Required.Error("is required"),
	valid.Match(regexp.MustCompile("^[0-9]{5}$")).Error("must be a string with five digits"),
)
fmt.Println(err)
// Output:
// must be a string with five digits

You can also customize the pre-defined error(s) of a built-in rule such that the customization applies to every instance of the rule. For example, the Required rule uses the pre-defined error ErrRequired. You can customize it during the application initialization:

valid.ErrRequired = valid.ErrRequired.SetMessage("the value is required") 

Error Code and Message Translation

The errors returned by the validation rules implement the Error interface which contains the Code() method to provide the error code information. While the message of a validation error is often customized, the code is immutable. You can use error code to programmatically check a validation error or look for the translation of the corresponding message.

If you are developing your own validation rules, you can use valid.NewError() to create a validation error which implements the aforementioned Error interface.

Creating Custom Rules

Creating a custom rule is as simple as implementing the valid.Rule interface. The interface contains a single method as shown below, which should validate the value and return the validation error, if any:

// Validate validates a value and returns an error if validation fails.
Validate(value interface{}) error

If you already have a function with the same signature as shown above, you can call valid.By() to turn it into a validation rule. For example,

func checkAbc(value interface{}) error {
	s, _ := value.(string)
	if s != "abc" {
		return errors.New("must be abc")
	}
	return nil
}

err := valid.Validate("xyz", valid.By(checkAbc))
fmt.Println(err)
// Output: must be abc

If your validation function takes additional parameters, you can use the following closure trick:

func stringEquals(str string) valid.RuleFunc {
	return func(value interface{}) error {
		s, _ := value.(string)
        if s != str {
            return errors.New("unexpected string")
        }
        return nil
    }
}

err := valid.Validate("xyz", valid.By(stringEquals("abc")))
fmt.Println(err)
// Output: unexpected string

Rule Groups

When a combination of several rules are used in multiple places, you may use the following trick to create a rule group so that your code is more maintainable.

var NameRule = []valid.Rule{
	valid.Required,
	valid.Length(5, 20),
}

type User struct {
	FirstName string
	LastName  string
}

func (u User) Validate() error {
	return valid.ValidateStruct(&u,
		valid.Field(&u.FirstName, NameRule...),
		valid.Field(&u.LastName, NameRule...),
	)
}

In the above example, we create a rule group NameRule which consists of two validation rules. We then use this rule group to validate both FirstName and LastName.

Context-aware Validation

While most validation rules are self-contained, some rules may depend dynamically on a context. A rule may implement the valid.RuleWithContext interface to support the so-called context-aware valid.

To validate an arbitrary value with a context, call valid.ValidateWithContext(). The context.Conext parameter will be passed along to those rules that implement valid.RuleWithContext.

To validate the fields of a struct with a context, call valid.ValidateStructWithContext().

You can define a context-aware rule from scratch by implementing both valid.Rule and valid.RuleWithContext. You can also use valid.WithContext() to turn a function into a context-aware rule. For example,

rule := valid.WithContext(func(ctx context.Context, value interface{}) error {
	if ctx.Value("secret") == value.(string) {
	    return nil
	}
	return errors.New("value incorrect")
})
value := "xyz"
ctx := context.WithValue(context.Background(), "secret", "example")
err := valid.ValidateWithContext(ctx, value, rule)
fmt.Println(err)
// Output: value incorrect

When performing context-aware validation, if a rule does not implement valid.RuleWithContext, its valid.Rule will be used instead.

Built-in Validation Rules

The following rules are provided in the validation package:

  • In(...interface{}): checks if a value can be found in the given list of values.
  • NotIn(...interface{}): checks if a value is NOT among the given list of values.
  • Length(min, max int): checks if the length of a value is within the specified range. This rule should only be used for validating strings, slices, maps, and arrays.
  • RuneLength(min, max int): checks if the length of a string is within the specified range. This rule is similar as Length except that when the value being validated is a string, it checks its rune length instead of byte length.
  • Min(min interface{}) and Max(max interface{}): checks if a value is within the specified range. These two rules should only be used for validating int, uint, float and time.Time types.
  • Match(*regexp.Regexp): checks if a value matches the specified regular expression. This rule should only be used for strings and byte slices.
  • Date(layout string): checks if a string value is a date whose format is specified by the layout. By calling Min() and/or Max(), you can check additionally if the date is within the specified range.
  • Required: checks if a value is not empty (neither nil nor zero).
  • NotNil: checks if a pointer value is not nil. Non-pointer values are considered valid.
  • NilOrNotEmpty: checks if a value is a nil pointer or a non-empty value. This differs from Required in that it treats a nil pointer as valid.
  • Nil: checks if a value is a nil pointer.
  • Empty: checks if a value is empty. nil pointers are considered valid.
  • Skip: this is a special rule used to indicate that all rules following it should be skipped (including the nested ones).
  • MultipleOf: checks if the value is a multiple of the specified range.
  • Each(rules ...Rule): checks the elements within an iterable (map/slice/array) with other rules.
  • When(condition, rules ...Rule): validates with the specified rules only when the condition is true.
  • Else(rules ...Rule): must be used with When(condition, rules ...Rule), validates with the specified rules only when the condition is false.

The is sub-package provides a list of commonly used string validation rules that can be used to check if the format of a value satisfies certain requirements. Note that these rules only handle strings and byte slices and if a string or byte slice is empty, it is considered valid. You may use a Required rule to ensure a value is not empty. Below is the whole list of the rules provided by the is package:

  • Email: validates if a string is an email or not. It also checks if the MX record exists for the email domain.
  • EmailFormat: validates if a string is an email or not. It does NOT check the existence of the MX record.
  • URL: validates if a string is a valid URL
  • RequestURL: validates if a string is a valid request URL
  • RequestURI: validates if a string is a valid request URI
  • Alpha: validates if a string contains English letters only (a-zA-Z)
  • Digit: validates if a string contains digits only (0-9)
  • Alphanumeric: validates if a string contains English letters and digits only (a-zA-Z0-9)
  • UTFLetter: validates if a string contains unicode letters only
  • UTFDigit: validates if a string contains unicode decimal digits only
  • UTFLetterNumeric: validates if a string contains unicode letters and numbers only
  • UTFNumeric: validates if a string contains unicode number characters (category N) only
  • LowerCase: validates if a string contains lower case unicode letters only
  • UpperCase: validates if a string contains upper case unicode letters only
  • Hexadecimal: validates if a string is a valid hexadecimal number
  • HexColor: validates if a string is a valid hexadecimal color code
  • RGBColor: validates if a string is a valid RGB color in the form of rgb(R, G, B)
  • Int: validates if a string is a valid integer number
  • Float: validates if a string is a floating point number
  • UUIDv3: validates if a string is a valid version 3 UUID
  • UUIDv4: validates if a string is a valid version 4 UUID
  • UUIDv5: validates if a string is a valid version 5 UUID
  • UUID: validates if a string is a valid UUID
  • CreditCard: validates if a string is a valid credit card number
  • ISBN10: validates if a string is an ISBN version 10
  • ISBN13: validates if a string is an ISBN version 13
  • ISBN: validates if a string is an ISBN (either version 10 or 13)
  • JSON: validates if a string is in valid JSON format
  • ASCII: validates if a string contains ASCII characters only
  • PrintableASCII: validates if a string contains printable ASCII characters only
  • Multibyte: validates if a string contains multibyte characters
  • FullWidth: validates if a string contains full-width characters
  • HalfWidth: validates if a string contains half-width characters
  • VariableWidth: validates if a string contains both full-width and half-width characters
  • Base64: validates if a string is encoded in Base64
  • DataURI: validates if a string is a valid base64-encoded data URI
  • E164: validates if a string is a valid E164 phone number (+19251232233)
  • CountryCode2: validates if a string is a valid ISO3166 Alpha 2 country code
  • CountryCode3: validates if a string is a valid ISO3166 Alpha 3 country code
  • DialString: validates if a string is a valid dial string that can be passed to Dial()
  • MAC: validates if a string is a MAC address
  • IP: validates if a string is a valid IP address (either version 4 or 6)
  • IPv4: validates if a string is a valid version 4 IP address
  • IPv6: validates if a string is a valid version 6 IP address
  • Subdomain: validates if a string is valid subdomain
  • Domain: validates if a string is valid domain
  • DNSName: validates if a string is valid DNS name
  • Host: validates if a string is a valid IP (both v4 and v6) or a valid DNS name
  • Port: validates if a string is a valid port number
  • MongoID: validates if a string is a valid Mongo ID
  • Latitude: validates if a string is a valid latitude
  • Longitude: validates if a string is a valid longitude
  • SSN: validates if a string is a social security number (SSN)
  • Semver: validates if a string is a valid semantic version