123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- // Copyright 2019 Google LLC.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- syntax = "proto3";
- package google.cloud.datalabeling.v1beta1;
- import "google/api/resource.proto";
- import "google/cloud/datalabeling/v1beta1/dataset.proto";
- import "google/cloud/datalabeling/v1beta1/evaluation.proto";
- import "google/cloud/datalabeling/v1beta1/human_annotation_config.proto";
- import "google/protobuf/timestamp.proto";
- import "google/rpc/status.proto";
- option csharp_namespace = "Google.Cloud.DataLabeling.V1Beta1";
- option go_package = "google.golang.org/genproto/googleapis/cloud/datalabeling/v1beta1;datalabeling";
- option java_multiple_files = true;
- option java_package = "com.google.cloud.datalabeling.v1beta1";
- option php_namespace = "Google\\Cloud\\DataLabeling\\V1beta1";
- option ruby_package = "Google::Cloud::DataLabeling::V1beta1";
- // Defines an evaluation job that runs periodically to generate
- // [Evaluations][google.cloud.datalabeling.v1beta1.Evaluation]. [Creating an evaluation
- // job](/ml-engine/docs/continuous-evaluation/create-job) is the starting point
- // for using continuous evaluation.
- message EvaluationJob {
- option (google.api.resource) = {
- type: "datalabeling.googleapis.com/EvaluationJob"
- pattern: "projects/{project}/evaluationJobs/{evaluation_job}"
- };
- // State of the job.
- enum State {
- STATE_UNSPECIFIED = 0;
- // The job is scheduled to run at the [configured interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. You
- // can [pause][google.cloud.datalabeling.v1beta1.DataLabelingService.PauseEvaluationJob] or
- // [delete][google.cloud.datalabeling.v1beta1.DataLabelingService.DeleteEvaluationJob] the job.
- //
- // When the job is in this state, it samples prediction input and output
- // from your model version into your BigQuery table as predictions occur.
- SCHEDULED = 1;
- // The job is currently running. When the job runs, Data Labeling Service
- // does several things:
- //
- // 1. If you have configured your job to use Data Labeling Service for
- // ground truth labeling, the service creates a
- // [Dataset][google.cloud.datalabeling.v1beta1.Dataset] and a labeling task for all data sampled
- // since the last time the job ran. Human labelers provide ground truth
- // labels for your data. Human labeling may take hours, or even days,
- // depending on how much data has been sampled. The job remains in the
- // `RUNNING` state during this time, and it can even be running multiple
- // times in parallel if it gets triggered again (for example 24 hours
- // later) before the earlier run has completed. When human labelers have
- // finished labeling the data, the next step occurs.
- // <br><br>
- // If you have configured your job to provide your own ground truth
- // labels, Data Labeling Service still creates a [Dataset][google.cloud.datalabeling.v1beta1.Dataset] for newly
- // sampled data, but it expects that you have already added ground truth
- // labels to the BigQuery table by this time. The next step occurs
- // immediately.
- //
- // 2. Data Labeling Service creates an [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation] by comparing your
- // model version's predictions with the ground truth labels.
- //
- // If the job remains in this state for a long time, it continues to sample
- // prediction data into your BigQuery table and will run again at the next
- // interval, even if it causes the job to run multiple times in parallel.
- RUNNING = 2;
- // The job is not sampling prediction input and output into your BigQuery
- // table and it will not run according to its schedule. You can
- // [resume][google.cloud.datalabeling.v1beta1.DataLabelingService.ResumeEvaluationJob] the job.
- PAUSED = 3;
- // The job has this state right before it is deleted.
- STOPPED = 4;
- }
- // Output only. After you create a job, Data Labeling Service assigns a name
- // to the job with the following format:
- //
- // "projects/<var>{project_id}</var>/evaluationJobs/<var>{evaluation_job_id}</var>"
- string name = 1;
- // Required. Description of the job. The description can be up to 25,000
- // characters long.
- string description = 2;
- // Output only. Describes the current state of the job.
- State state = 3;
- // Required. Describes the interval at which the job runs. This interval must
- // be at least 1 day, and it is rounded to the nearest day. For example, if
- // you specify a 50-hour interval, the job runs every 2 days.
- //
- // You can provide the schedule in
- // [crontab format](/scheduler/docs/configuring/cron-job-schedules) or in an
- // [English-like
- // format](/appengine/docs/standard/python/config/cronref#schedule_format).
- //
- // Regardless of what you specify, the job will run at 10:00 AM UTC. Only the
- // interval from this schedule is used, not the specific time of day.
- string schedule = 4;
- // Required. The [AI Platform Prediction model
- // version](/ml-engine/docs/prediction-overview) to be evaluated. Prediction
- // input and output is sampled from this model version. When creating an
- // evaluation job, specify the model version in the following format:
- //
- // "projects/<var>{project_id}</var>/models/<var>{model_name}</var>/versions/<var>{version_name}</var>"
- //
- // There can only be one evaluation job per model version.
- string model_version = 5;
- // Required. Configuration details for the evaluation job.
- EvaluationJobConfig evaluation_job_config = 6;
- // Required. Name of the [AnnotationSpecSet][google.cloud.datalabeling.v1beta1.AnnotationSpecSet] describing all the
- // labels that your machine learning model outputs. You must create this
- // resource before you create an evaluation job and provide its name in the
- // following format:
- //
- // "projects/<var>{project_id}</var>/annotationSpecSets/<var>{annotation_spec_set_id}</var>"
- string annotation_spec_set = 7;
- // Required. Whether you want Data Labeling Service to provide ground truth
- // labels for prediction input. If you want the service to assign human
- // labelers to annotate your data, set this to `true`. If you want to provide
- // your own ground truth labels in the evaluation job's BigQuery table, set
- // this to `false`.
- bool label_missing_ground_truth = 8;
- // Output only. Every time the evaluation job runs and an error occurs, the
- // failed attempt is appended to this array.
- repeated Attempt attempts = 9;
- // Output only. Timestamp of when this evaluation job was created.
- google.protobuf.Timestamp create_time = 10;
- }
- // Configures specific details of how a continuous evaluation job works. Provide
- // this configuration when you create an EvaluationJob.
- message EvaluationJobConfig {
- // Required. Details for how you want human reviewers to provide ground truth
- // labels.
- oneof human_annotation_request_config {
- // Specify this field if your model version performs image classification or
- // general classification.
- //
- // `annotationSpecSet` in this configuration must match
- // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
- // `allowMultiLabel` in this configuration must match
- // `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
- ImageClassificationConfig image_classification_config = 4;
- // Specify this field if your model version performs image object detection
- // (bounding box detection).
- //
- // `annotationSpecSet` in this configuration must match
- // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
- BoundingPolyConfig bounding_poly_config = 5;
- // Specify this field if your model version performs text classification.
- //
- // `annotationSpecSet` in this configuration must match
- // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
- // `allowMultiLabel` in this configuration must match
- // `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
- TextClassificationConfig text_classification_config = 8;
- }
- // Rquired. Details for the sampled prediction input. Within this
- // configuration, there are requirements for several fields:
- //
- // * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
- // * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
- // `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
- // or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
- // * If your machine learning model performs classification, you must specify
- // `classificationMetadata.isMultiLabel`.
- // * You must specify `bigquerySource` (not `gcsSource`).
- InputConfig input_config = 1;
- // Required. Details for calculating evaluation metrics and creating
- // [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
- // detection, you must specify the `boundingBoxEvaluationOptions` field within
- // this configuration. Otherwise, provide an empty object for this
- // configuration.
- EvaluationConfig evaluation_config = 2;
- // Optional. Details for human annotation of your data. If you set
- // [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
- // `true` for this evaluation job, then you must specify this field. If you
- // plan to provide your own ground truth labels, then omit this field.
- //
- // Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
- // specify this field. Provide the name of the instruction resource in the
- // `instruction` field within this configuration.
- HumanAnnotationConfig human_annotation_config = 3;
- // Required. Prediction keys that tell Data Labeling Service where to find the
- // data for evaluation in your BigQuery table. When the service samples
- // prediction input and output from your model version and saves it to
- // BigQuery, the data gets stored as JSON strings in the BigQuery table. These
- // keys tell Data Labeling Service how to parse the JSON.
- //
- // You can provide the following entries in this field:
- //
- // * `data_json_key`: the data key for prediction input. You must provide
- // either this key or `reference_json_key`.
- // * `reference_json_key`: the data reference key for prediction input. You
- // must provide either this key or `data_json_key`.
- // * `label_json_key`: the label key for prediction output. Required.
- // * `label_score_json_key`: the score key for prediction output. Required.
- // * `bounding_box_json_key`: the bounding box key for prediction output.
- // Required if your model version perform image object detection.
- //
- // Learn [how to configure prediction
- // keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
- map<string, string> bigquery_import_keys = 9;
- // Required. The maximum number of predictions to sample and save to BigQuery
- // during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit
- // overrides `example_sample_percentage`: even if the service has not sampled
- // enough predictions to fulfill `example_sample_perecentage` during an
- // interval, it stops sampling predictions when it meets this limit.
- int32 example_count = 10;
- // Required. Fraction of predictions to sample and save to BigQuery during
- // each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means
- // 10% of predictions served by your model version get saved to BigQuery.
- double example_sample_percentage = 11;
- // Optional. Configuration details for evaluation job alerts. Specify this
- // field if you want to receive email alerts if the evaluation job finds that
- // your predictions have low mean average precision during a run.
- EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- }
- // Provides details for how an evaluation job sends email alerts based on the
- // results of a run.
- message EvaluationJobAlertConfig {
- // Required. An email address to send alerts to.
- string email = 1;
- // Required. A number between 0 and 1 that describes a minimum mean average
- // precision threshold. When the evaluation job runs, if it calculates that
- // your model version's predictions from the recent interval have
- // [meanAveragePrecision][google.cloud.datalabeling.v1beta1.PrCurve.mean_average_precision] below this
- // threshold, then it sends an alert to your specified email.
- double min_acceptable_mean_average_precision = 2;
- }
- // Records a failed evaluation job run.
- message Attempt {
- google.protobuf.Timestamp attempt_time = 1;
- // Details of errors that occurred.
- repeated google.rpc.Status partial_failures = 2;
- }
|