12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- // Copyright 2020 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- syntax = "proto3";
- package google.cloud.automl.v1beta1;
- import "google/cloud/automl/v1beta1/classification.proto";
- option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
- option java_multiple_files = true;
- option java_outer_classname = "TextProto";
- option java_package = "com.google.cloud.automl.v1beta1";
- option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
- option ruby_package = "Google::Cloud::AutoML::V1beta1";
- // Dataset metadata for classification.
- message TextClassificationDatasetMetadata {
- // Required. Type of the classification problem.
- ClassificationType classification_type = 1;
- }
- // Model metadata that is specific to text classification.
- message TextClassificationModelMetadata {
- // Output only. Classification type of the dataset used to train this model.
- ClassificationType classification_type = 3;
- }
- // Dataset metadata that is specific to text extraction
- message TextExtractionDatasetMetadata {
- }
- // Model metadata that is specific to text extraction.
- message TextExtractionModelMetadata {
- // Indicates the scope of model use case.
- //
- // * `default`: Use to train a general text extraction model. Default value.
- //
- // * `health_care`: Use to train a text extraction model that is tuned for
- // healthcare applications.
- string model_hint = 3;
- }
- // Dataset metadata for text sentiment.
- message TextSentimentDatasetMetadata {
- // Required. A sentiment is expressed as an integer ordinal, where higher value
- // means a more positive sentiment. The range of sentiments that will be used
- // is between 0 and sentiment_max (inclusive on both ends), and all the values
- // in the range must be represented in the dataset before a model can be
- // created.
- // sentiment_max value must be between 1 and 10 (inclusive).
- int32 sentiment_max = 1;
- }
- // Model metadata that is specific to text sentiment.
- message TextSentimentModelMetadata {
- }
|