123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- // Copyright 2020 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- syntax = "proto3";
- package google.cloud.automl.v1beta1;
- import "google/cloud/automl/v1beta1/classification.proto";
- import "google/cloud/automl/v1beta1/column_spec.proto";
- import "google/cloud/automl/v1beta1/data_items.proto";
- import "google/cloud/automl/v1beta1/data_stats.proto";
- import "google/cloud/automl/v1beta1/ranges.proto";
- import "google/cloud/automl/v1beta1/regression.proto";
- import "google/cloud/automl/v1beta1/temporal.proto";
- import "google/protobuf/struct.proto";
- import "google/protobuf/timestamp.proto";
- option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
- option java_multiple_files = true;
- option java_package = "com.google.cloud.automl.v1beta1";
- option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
- option ruby_package = "Google::Cloud::AutoML::V1beta1";
- // Metadata for a dataset used for AutoML Tables.
- message TablesDatasetMetadata {
- // Output only. The table_spec_id of the primary table of this dataset.
- string primary_table_spec_id = 1;
- // column_spec_id of the primary table's column that should be used as the
- // training & prediction target.
- // This column must be non-nullable and have one of following data types
- // (otherwise model creation will error):
- //
- // * CATEGORY
- //
- // * FLOAT64
- //
- // If the type is CATEGORY , only up to
- // 100 unique values may exist in that column across all rows.
- //
- // NOTE: Updates of this field will instantly affect any other users
- // concurrently working with the dataset.
- string target_column_spec_id = 2;
- // column_spec_id of the primary table's column that should be used as the
- // weight column, i.e. the higher the value the more important the row will be
- // during model training.
- // Required type: FLOAT64.
- // Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
- // ignored for training.
- // If not set all rows are assumed to have equal weight of 1.
- // NOTE: Updates of this field will instantly affect any other users
- // concurrently working with the dataset.
- string weight_column_spec_id = 3;
- // column_spec_id of the primary table column which specifies a possible ML
- // use of the row, i.e. the column will be used to split the rows into TRAIN,
- // VALIDATE and TEST sets.
- // Required type: STRING.
- // This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
- // among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
- // case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
- // that if a given ml use distribution makes it impossible to create a "good"
- // model, that call will error describing the issue.
- // If both this column_spec_id and primary table's time_column_spec_id are not
- // set, then all rows are treated as `UNASSIGNED`.
- // NOTE: Updates of this field will instantly affect any other users
- // concurrently working with the dataset.
- string ml_use_column_spec_id = 4;
- // Output only. Correlations between
- //
- // [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
- // and other columns of the
- //
- // [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
- // Only set if the target column is set. Mapping from other column spec id to
- // its CorrelationStats with the target column.
- // This field may be stale, see the stats_update_time field for
- // for the timestamp at which these stats were last updated.
- map<string, CorrelationStats> target_column_correlations = 6;
- // Output only. The most recent timestamp when target_column_correlations
- // field and all descendant ColumnSpec.data_stats and
- // ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
- // changes that happened to the dataset afterwards are not reflected in these
- // fields values. The regeneration happens in the background on a best effort
- // basis.
- google.protobuf.Timestamp stats_update_time = 7;
- }
- // Model metadata specific to AutoML Tables.
- message TablesModelMetadata {
- // Additional optimization objective configuration. Required for
- // `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
- // otherwise unused.
- oneof additional_optimization_objective_config {
- // Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
- // Must be between 0 and 1, inclusive.
- float optimization_objective_recall_value = 17;
- // Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
- // Must be between 0 and 1, inclusive.
- float optimization_objective_precision_value = 18;
- }
- // Column spec of the dataset's primary table's column the model is
- // predicting. Snapshotted when model creation started.
- // Only 3 fields are used:
- // name - May be set on CreateModel, if it's not then the ColumnSpec
- // corresponding to the current target_column_spec_id of the dataset
- // the model is trained from is used.
- // If neither is set, CreateModel will error.
- // display_name - Output only.
- // data_type - Output only.
- ColumnSpec target_column_spec = 2;
- // Column specs of the dataset's primary table's columns, on which
- // the model is trained and which are used as the input for predictions.
- // The
- //
- // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
- // as well as, according to dataset's state upon model creation,
- //
- // [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
- // and
- //
- // [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
- // must never be included here.
- //
- // Only 3 fields are used:
- //
- // * name - May be set on CreateModel, if set only the columns specified are
- // used, otherwise all primary table's columns (except the ones listed
- // above) are used for the training and prediction input.
- //
- // * display_name - Output only.
- //
- // * data_type - Output only.
- repeated ColumnSpec input_feature_column_specs = 3;
- // Objective function the model is optimizing towards. The training process
- // creates a model that maximizes/minimizes the value of the objective
- // function over the validation set.
- //
- // The supported optimization objectives depend on the prediction type.
- // If the field is not set, a default objective function is used.
- //
- // CLASSIFICATION_BINARY:
- // "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
- // operating characteristic (ROC) curve.
- // "MINIMIZE_LOG_LOSS" - Minimize log loss.
- // "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
- // "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
- // recall value.
- // "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
- // precision value.
- //
- // CLASSIFICATION_MULTI_CLASS :
- // "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
- //
- //
- // REGRESSION:
- // "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
- // "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
- // "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
- string optimization_objective = 4;
- // Output only. Auxiliary information for each of the
- // input_feature_column_specs with respect to this particular model.
- repeated TablesModelColumnInfo tables_model_column_info = 5;
- // Required. The train budget of creating this model, expressed in milli node
- // hours i.e. 1,000 value in this field means 1 node hour.
- //
- // The training cost of the model will not exceed this budget. The final cost
- // will be attempted to be close to the budget, though may end up being (even)
- // noticeably smaller - at the backend's discretion. This especially may
- // happen when further model training ceases to provide any improvements.
- //
- // If the budget is set to a value known to be insufficient to train a
- // model for the given dataset, the training won't be attempted and
- // will error.
- //
- // The train budget must be between 1,000 and 72,000 milli node hours,
- // inclusive.
- int64 train_budget_milli_node_hours = 6;
- // Output only. The actual training cost of the model, expressed in milli
- // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
- // to not exceed the train budget.
- int64 train_cost_milli_node_hours = 7;
- // Use the entire training budget. This disables the early stopping feature.
- // By default, the early stopping feature is enabled, which means that AutoML
- // Tables might stop training before the entire training budget has been used.
- bool disable_early_stopping = 12;
- }
- // Contains annotation details specific to Tables.
- message TablesAnnotation {
- // Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
- // value means greater confidence in the returned value.
- // For
- //
- // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
- // of FLOAT64 data type the score is not populated.
- float score = 1;
- // Output only. Only populated when
- //
- // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
- // has FLOAT64 data type. An interval in which the exactly correct target
- // value has 95% chance to be in.
- DoubleRange prediction_interval = 4;
- // The predicted value of the row's
- //
- // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
- // The value depends on the column's DataType:
- //
- // * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
- // value.
- //
- // * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
- google.protobuf.Value value = 2;
- // Output only. Auxiliary information for each of the model's
- //
- // [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
- // with respect to this particular prediction.
- // If no other fields than
- //
- // [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
- // and
- //
- // [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
- // would be populated, then this whole field is not.
- repeated TablesModelColumnInfo tables_model_column_info = 3;
- // Output only. Stores the prediction score for the baseline example, which
- // is defined as the example with all values set to their baseline values.
- // This is used as part of the Sampled Shapley explanation of the model's
- // prediction. This field is populated only when feature importance is
- // requested. For regression models, this holds the baseline prediction for
- // the baseline example. For classification models, this holds the baseline
- // prediction for the baseline example for the argmax class.
- float baseline_score = 5;
- }
- // An information specific to given column and Tables Model, in context
- // of the Model and the predictions created by it.
- message TablesModelColumnInfo {
- // Output only. The name of the ColumnSpec describing the column. Not
- // populated when this proto is outputted to BigQuery.
- string column_spec_name = 1;
- // Output only. The display name of the column (same as the display_name of
- // its ColumnSpec).
- string column_display_name = 2;
- // Output only. When given as part of a Model (always populated):
- // Measurement of how much model predictions correctness on the TEST data
- // depend on values in this column. A value between 0 and 1, higher means
- // higher influence. These values are normalized - for all input feature
- // columns of a given model they add to 1.
- //
- // When given back by Predict (populated iff
- // [feature_importance
- // param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
- // Predict (populated iff
- // [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
- // param is set):
- // Measurement of how impactful for the prediction returned for the given row
- // the value in this column was. Specifically, the feature importance
- // specifies the marginal contribution that the feature made to the prediction
- // score compared to the baseline score. These values are computed using the
- // Sampled Shapley method.
- float feature_importance = 3;
- }
|