| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 | // Copyright 2022 Google LLC//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////     http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.syntax = "proto3";package google.cloud.aiplatform.v1beta1;import "google/api/annotations.proto";import "google/api/client.proto";import "google/api/field_behavior.proto";import "google/api/httpbody.proto";import "google/api/resource.proto";import "google/cloud/aiplatform/v1beta1/explanation.proto";import "google/protobuf/struct.proto";option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1";option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1beta1;aiplatform";option java_multiple_files = true;option java_outer_classname = "PredictionServiceProto";option java_package = "com.google.cloud.aiplatform.v1beta1";option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1";option ruby_package = "Google::Cloud::AIPlatform::V1beta1";// A service for online predictions and explanations.service PredictionService {  option (google.api.default_host) = "aiplatform.googleapis.com";  option (google.api.oauth_scopes) = "https://www.googleapis.com/auth/cloud-platform";  // Perform an online prediction.  rpc Predict(PredictRequest) returns (PredictResponse) {    option (google.api.http) = {      post: "/v1beta1/{endpoint=projects/*/locations/*/endpoints/*}:predict"      body: "*"    };    option (google.api.method_signature) = "endpoint,instances,parameters";  }  // Perform an online prediction with an arbitrary HTTP payload.  //  // The response includes the following HTTP headers:  //  // * `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] that served this  // prediction.  //  // * `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel]  // that served this prediction.  rpc RawPredict(RawPredictRequest) returns (google.api.HttpBody) {    option (google.api.http) = {      post: "/v1beta1/{endpoint=projects/*/locations/*/endpoints/*}:rawPredict"      body: "*"    };    option (google.api.method_signature) = "endpoint,http_body";  }  // Perform an online explanation.  //  // If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is specified,  // the corresponding DeployModel must have  // [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec]  // populated. If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id]  // is not specified, all DeployedModels must have  // [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec]  // populated. Only deployed AutoML tabular Models have  // explanation_spec.  rpc Explain(ExplainRequest) returns (ExplainResponse) {    option (google.api.http) = {      post: "/v1beta1/{endpoint=projects/*/locations/*/endpoints/*}:explain"      body: "*"    };    option (google.api.method_signature) = "endpoint,instances,parameters,deployed_model_id";  }}// Request message for [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].message PredictRequest {  // Required. The name of the Endpoint requested to serve the prediction.  // Format:  // `projects/{project}/locations/{location}/endpoints/{endpoint}`  string endpoint = 1 [    (google.api.field_behavior) = REQUIRED,    (google.api.resource_reference) = {      type: "aiplatform.googleapis.com/Endpoint"    }  ];  // Required. The instances that are the input to the prediction call.  // A DeployedModel may have an upper limit on the number of instances it  // supports per request, and when it is exceeded the prediction call errors  // in case of AutoML Models, or, in case of customer created Models, the  // behaviour is as documented by that Model.  // The schema of any single instance may be specified via Endpoint's  // DeployedModels' [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model]  // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]  // [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri].  repeated google.protobuf.Value instances = 2 [(google.api.field_behavior) = REQUIRED];  // The parameters that govern the prediction. The schema of the parameters may  // be specified via Endpoint's DeployedModels' [Model's ][google.cloud.aiplatform.v1beta1.DeployedModel.model]  // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]  // [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri].  google.protobuf.Value parameters = 3;}// Response message for [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].message PredictResponse {  // The predictions that are the output of the predictions call.  // The schema of any single prediction may be specified via Endpoint's  // DeployedModels' [Model's ][google.cloud.aiplatform.v1beta1.DeployedModel.model]  // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]  // [prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri].  repeated google.protobuf.Value predictions = 1;  // ID of the Endpoint's DeployedModel that served this prediction.  string deployed_model_id = 2;  // Output only. The resource name of the Model which is deployed as the DeployedModel that  // this prediction hits.  string model = 3 [    (google.api.field_behavior) = OUTPUT_ONLY,    (google.api.resource_reference) = {      type: "aiplatform.googleapis.com/Model"    }  ];  // Output only. The version ID of the Model which is deployed as the DeployedModel that  // this prediction hits.  string model_version_id = 5 [(google.api.field_behavior) = OUTPUT_ONLY];  // Output only. The [display name][google.cloud.aiplatform.v1beta1.Model.display_name] of the Model which is deployed as  // the DeployedModel that this prediction hits.  string model_display_name = 4 [(google.api.field_behavior) = OUTPUT_ONLY];}// Request message for [PredictionService.RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict].message RawPredictRequest {  // Required. The name of the Endpoint requested to serve the prediction.  // Format:  // `projects/{project}/locations/{location}/endpoints/{endpoint}`  string endpoint = 1 [    (google.api.field_behavior) = REQUIRED,    (google.api.resource_reference) = {      type: "aiplatform.googleapis.com/Endpoint"    }  ];  // The prediction input. Supports HTTP headers and arbitrary data payload.  //  // A [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] may have an upper limit on the number of instances it  // supports per request. When this limit it is exceeded for an AutoML model,  // the [RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict] method returns an error.  // When this limit is exceeded for a custom-trained model, the behavior varies  // depending on the model.  //  // You can specify the schema for each instance in the  // [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]  // field when you create a [Model][google.cloud.aiplatform.v1beta1.Model]. This schema applies when you deploy the  // `Model` as a `DeployedModel` to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and use the `RawPredict`  // method.  google.api.HttpBody http_body = 2;}// Request message for [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].message ExplainRequest {  // Required. The name of the Endpoint requested to serve the explanation.  // Format:  // `projects/{project}/locations/{location}/endpoints/{endpoint}`  string endpoint = 1 [    (google.api.field_behavior) = REQUIRED,    (google.api.resource_reference) = {      type: "aiplatform.googleapis.com/Endpoint"    }  ];  // Required. The instances that are the input to the explanation call.  // A DeployedModel may have an upper limit on the number of instances it  // supports per request, and when it is exceeded the explanation call errors  // in case of AutoML Models, or, in case of customer created Models, the  // behaviour is as documented by that Model.  // The schema of any single instance may be specified via Endpoint's  // DeployedModels' [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model]  // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]  // [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri].  repeated google.protobuf.Value instances = 2 [(google.api.field_behavior) = REQUIRED];  // The parameters that govern the prediction. The schema of the parameters may  // be specified via Endpoint's DeployedModels' [Model's ][google.cloud.aiplatform.v1beta1.DeployedModel.model]  // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]  // [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri].  google.protobuf.Value parameters = 4;  // If specified, overrides the  // [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of the DeployedModel.  // Can be used for explaining prediction results with different  // configurations, such as:  //  - Explaining top-5 predictions results as opposed to top-1;  //  - Increasing path count or step count of the attribution methods to reduce  //    approximate errors;  //  - Using different baselines for explaining the prediction results.  ExplanationSpecOverride explanation_spec_override = 5;  // If specified, this ExplainRequest will be served by the chosen  // DeployedModel, overriding [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split].  string deployed_model_id = 3;}// Response message for [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].message ExplainResponse {  // The explanations of the Model's [PredictResponse.predictions][google.cloud.aiplatform.v1beta1.PredictResponse.predictions].  //  // It has the same number of elements as [instances][google.cloud.aiplatform.v1beta1.ExplainRequest.instances]  // to be explained.  repeated Explanation explanations = 1;  // ID of the Endpoint's DeployedModel that served this explanation.  string deployed_model_id = 2;  // The predictions that are the output of the predictions call.  // Same as [PredictResponse.predictions][google.cloud.aiplatform.v1beta1.PredictResponse.predictions].  repeated google.protobuf.Value predictions = 3;}
 |