1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- // Copyright 2022 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- syntax = "proto3";
- package google.cloud.aiplatform.v1beta1;
- import "google/protobuf/timestamp.proto";
- option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1";
- option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1beta1;aiplatform";
- option java_multiple_files = true;
- option java_outer_classname = "FeatureMonitoringStatsProto";
- option java_package = "com.google.cloud.aiplatform.v1beta1";
- option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1";
- option ruby_package = "Google::Cloud::AIPlatform::V1beta1";
- // Stats and Anomaly generated at specific timestamp for specific Feature.
- // The start_time and end_time are used to define the time range of the dataset
- // that current stats belongs to, e.g. prediction traffic is bucketed into
- // prediction datasets by time window. If the Dataset is not defined by time
- // window, start_time = end_time. Timestamp of the stats and anomalies always
- // refers to end_time. Raw stats and anomalies are stored in stats_uri or
- // anomaly_uri in the tensorflow defined protos. Field data_stats contains
- // almost identical information with the raw stats in Vertex AI
- // defined proto, for UI to display.
- message FeatureStatsAnomaly {
- // Feature importance score, only populated when cross-feature monitoring is
- // enabled. For now only used to represent feature attribution score within
- // range [0, 1] for
- // [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW] and
- // [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT].
- double score = 1;
- // Path of the stats file for current feature values in Cloud Storage bucket.
- // Format: gs://<bucket_name>/<object_name>/stats.
- // Example: gs://monitoring_bucket/feature_name/stats.
- // Stats are stored as binary format with Protobuf message
- // [tensorflow.metadata.v0.FeatureNameStatistics](https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/statistics.proto).
- string stats_uri = 3;
- // Path of the anomaly file for current feature values in Cloud Storage
- // bucket.
- // Format: gs://<bucket_name>/<object_name>/anomalies.
- // Example: gs://monitoring_bucket/feature_name/anomalies.
- // Stats are stored as binary format with Protobuf message
- // Anoamlies are stored as binary format with Protobuf message
- // [tensorflow.metadata.v0.AnomalyInfo]
- // (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
- string anomaly_uri = 4;
- // Deviation from the current stats to baseline stats.
- // 1. For categorical feature, the distribution distance is calculated by
- // L-inifinity norm.
- // 2. For numerical feature, the distribution distance is calculated by
- // Jensen–Shannon divergence.
- double distribution_deviation = 5;
- // This is the threshold used when detecting anomalies.
- // The threshold can be changed by user, so this one might be different from
- // [ThresholdConfig.value][google.cloud.aiplatform.v1beta1.ThresholdConfig.value].
- double anomaly_detection_threshold = 9;
- // The start timestamp of window where stats were generated.
- // For objectives where time window doesn't make sense (e.g. Featurestore
- // Snapshot Monitoring), start_time is only used to indicate the monitoring
- // intervals, so it always equals to (end_time - monitoring_interval).
- google.protobuf.Timestamp start_time = 7;
- // The end timestamp of window where stats were generated.
- // For objectives where time window doesn't make sense (e.g. Featurestore
- // Snapshot Monitoring), end_time indicates the timestamp of the data used to
- // generate stats (e.g. timestamp we take snapshots for feature values).
- google.protobuf.Timestamp end_time = 8;
- }
|