123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- // Copyright 2022 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- syntax = "proto3";
- package google.cloud.aiplatform.v1beta1;
- import "google/api/field_behavior.proto";
- import "google/api/resource.proto";
- import "google/cloud/aiplatform/v1beta1/encryption_spec.proto";
- import "google/cloud/aiplatform/v1beta1/job_state.proto";
- import "google/protobuf/struct.proto";
- import "google/protobuf/timestamp.proto";
- import "google/rpc/status.proto";
- import "google/type/money.proto";
- option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1";
- option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1beta1;aiplatform";
- option java_multiple_files = true;
- option java_outer_classname = "DataLabelingJobProto";
- option java_package = "com.google.cloud.aiplatform.v1beta1";
- option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1";
- option ruby_package = "Google::Cloud::AIPlatform::V1beta1";
- // DataLabelingJob is used to trigger a human labeling job on unlabeled data
- // from the following Dataset:
- message DataLabelingJob {
- option (google.api.resource) = {
- type: "aiplatform.googleapis.com/DataLabelingJob"
- pattern: "projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}"
- };
- // Output only. Resource name of the DataLabelingJob.
- string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Required. The user-defined name of the DataLabelingJob.
- // The name can be up to 128 characters long and can be consist of any UTF-8
- // characters.
- // Display name of a DataLabelingJob.
- string display_name = 2 [(google.api.field_behavior) = REQUIRED];
- // Required. Dataset resource names. Right now we only support labeling from a single
- // Dataset.
- // Format:
- // `projects/{project}/locations/{location}/datasets/{dataset}`
- repeated string datasets = 3 [
- (google.api.field_behavior) = REQUIRED,
- (google.api.resource_reference) = {
- type: "aiplatform.googleapis.com/Dataset"
- }
- ];
- // Labels to assign to annotations generated by this DataLabelingJob.
- //
- // Label keys and values can be no longer than 64 characters
- // (Unicode codepoints), can only contain lowercase letters, numeric
- // characters, underscores and dashes. International characters are allowed.
- // See https://goo.gl/xmQnxf for more information and examples of labels.
- // System reserved label keys are prefixed with "aiplatform.googleapis.com/"
- // and are immutable.
- map<string, string> annotation_labels = 12;
- // Required. Number of labelers to work on each DataItem.
- int32 labeler_count = 4 [(google.api.field_behavior) = REQUIRED];
- // Required. The Google Cloud Storage location of the instruction pdf. This pdf is
- // shared with labelers, and provides detailed description on how to label
- // DataItems in Datasets.
- string instruction_uri = 5 [(google.api.field_behavior) = REQUIRED];
- // Required. Points to a YAML file stored on Google Cloud Storage describing the
- // config for a specific type of DataLabelingJob.
- // The schema files that can be used here are found in the
- // https://storage.googleapis.com/google-cloud-aiplatform bucket in the
- // /schema/datalabelingjob/inputs/ folder.
- string inputs_schema_uri = 6 [(google.api.field_behavior) = REQUIRED];
- // Required. Input config parameters for the DataLabelingJob.
- google.protobuf.Value inputs = 7 [(google.api.field_behavior) = REQUIRED];
- // Output only. The detailed state of the job.
- JobState state = 8 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Output only. Current labeling job progress percentage scaled in interval [0, 100],
- // indicating the percentage of DataItems that has been finished.
- int32 labeling_progress = 13 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Output only. Estimated cost(in US dollars) that the DataLabelingJob has incurred to
- // date.
- google.type.Money current_spend = 14 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Output only. Timestamp when this DataLabelingJob was created.
- google.protobuf.Timestamp create_time = 9 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Output only. Timestamp when this DataLabelingJob was updated most recently.
- google.protobuf.Timestamp update_time = 10 [(google.api.field_behavior) = OUTPUT_ONLY];
- // Output only. DataLabelingJob errors. It is only populated when job's state is
- // `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
- google.rpc.Status error = 22 [(google.api.field_behavior) = OUTPUT_ONLY];
- // The labels with user-defined metadata to organize your DataLabelingJobs.
- //
- // Label keys and values can be no longer than 64 characters
- // (Unicode codepoints), can only contain lowercase letters, numeric
- // characters, underscores and dashes. International characters are allowed.
- //
- // See https://goo.gl/xmQnxf for more information and examples of labels.
- // System reserved label keys are prefixed with "aiplatform.googleapis.com/"
- // and are immutable. Following system labels exist for each DataLabelingJob:
- //
- // * "aiplatform.googleapis.com/schema": output only, its value is the
- // [inputs_schema][google.cloud.aiplatform.v1beta1.DataLabelingJob.inputs_schema_uri]'s title.
- map<string, string> labels = 11;
- // The SpecialistPools' resource names associated with this job.
- repeated string specialist_pools = 16;
- // Customer-managed encryption key spec for a DataLabelingJob. If set, this
- // DataLabelingJob will be secured by this key.
- //
- // Note: Annotations created in the DataLabelingJob are associated with
- // the EncryptionSpec of the Dataset they are exported to.
- EncryptionSpec encryption_spec = 20;
- // Parameters that configure the active learning pipeline. Active learning
- // will label the data incrementally via several iterations. For every
- // iteration, it will select a batch of data based on the sampling strategy.
- ActiveLearningConfig active_learning_config = 21;
- }
- // Parameters that configure the active learning pipeline. Active learning will
- // label the data incrementally by several iterations. For every iteration, it
- // will select a batch of data based on the sampling strategy.
- message ActiveLearningConfig {
- // Required. Max human labeling DataItems. The rest part will be labeled by
- // machine.
- oneof human_labeling_budget {
- // Max number of human labeled DataItems.
- int64 max_data_item_count = 1;
- // Max percent of total DataItems for human labeling.
- int32 max_data_item_percentage = 2;
- }
- // Active learning data sampling config. For every active learning labeling
- // iteration, it will select a batch of data based on the sampling strategy.
- SampleConfig sample_config = 3;
- // CMLE training config. For every active learning labeling iteration, system
- // will train a machine learning model on CMLE. The trained model will be used
- // by data sampling algorithm to select DataItems.
- TrainingConfig training_config = 4;
- }
- // Active learning data sampling config. For every active learning labeling
- // iteration, it will select a batch of data based on the sampling strategy.
- message SampleConfig {
- // Sample strategy decides which subset of DataItems should be selected for
- // human labeling in every batch.
- enum SampleStrategy {
- // Default will be treated as UNCERTAINTY.
- SAMPLE_STRATEGY_UNSPECIFIED = 0;
- // Sample the most uncertain data to label.
- UNCERTAINTY = 1;
- }
- // Decides sample size for the initial batch. initial_batch_sample_percentage
- // is used by default.
- oneof initial_batch_sample_size {
- // The percentage of data needed to be labeled in the first batch.
- int32 initial_batch_sample_percentage = 1;
- }
- // Decides sample size for the following batches.
- // following_batch_sample_percentage is used by default.
- oneof following_batch_sample_size {
- // The percentage of data needed to be labeled in each following batch
- // (except the first batch).
- int32 following_batch_sample_percentage = 3;
- }
- // Field to choose sampling strategy. Sampling strategy will decide which data
- // should be selected for human labeling in every batch.
- SampleStrategy sample_strategy = 5;
- }
- // CMLE training config. For every active learning labeling iteration, system
- // will train a machine learning model on CMLE. The trained model will be used
- // by data sampling algorithm to select DataItems.
- message TrainingConfig {
- // The timeout hours for the CMLE training job, expressed in milli hours
- // i.e. 1,000 value in this field means 1 hour.
- int64 timeout_training_milli_hours = 1;
- }
|