text_sentiment.proto 3.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. // Copyright 2020 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. syntax = "proto3";
  15. package google.cloud.automl.v1beta1;
  16. import "google/cloud/automl/v1beta1/classification.proto";
  17. option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
  18. option java_outer_classname = "TextSentimentProto";
  19. option java_package = "com.google.cloud.automl.v1beta1";
  20. option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
  21. option ruby_package = "Google::Cloud::AutoML::V1beta1";
  22. // Contains annotation details specific to text sentiment.
  23. message TextSentimentAnnotation {
  24. // Output only. The sentiment with the semantic, as given to the
  25. // [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData] when populating the dataset from which the model used
  26. // for the prediction had been trained.
  27. // The sentiment values are between 0 and
  28. // Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
  29. // with higher value meaning more positive sentiment. They are completely
  30. // relative, i.e. 0 means least positive sentiment and sentiment_max means
  31. // the most positive from the sentiments present in the train data. Therefore
  32. // e.g. if train data had only negative sentiment, then sentiment_max, would
  33. // be still negative (although least negative).
  34. // The sentiment shouldn't be confused with "score" or "magnitude"
  35. // from the previous Natural Language Sentiment Analysis API.
  36. int32 sentiment = 1;
  37. }
  38. // Model evaluation metrics for text sentiment problems.
  39. message TextSentimentEvaluationMetrics {
  40. // Output only. Precision.
  41. float precision = 1;
  42. // Output only. Recall.
  43. float recall = 2;
  44. // Output only. The harmonic mean of recall and precision.
  45. float f1_score = 3;
  46. // Output only. Mean absolute error. Only set for the overall model
  47. // evaluation, not for evaluation of a single annotation spec.
  48. float mean_absolute_error = 4;
  49. // Output only. Mean squared error. Only set for the overall model
  50. // evaluation, not for evaluation of a single annotation spec.
  51. float mean_squared_error = 5;
  52. // Output only. Linear weighted kappa. Only set for the overall model
  53. // evaluation, not for evaluation of a single annotation spec.
  54. float linear_kappa = 6;
  55. // Output only. Quadratic weighted kappa. Only set for the overall model
  56. // evaluation, not for evaluation of a single annotation spec.
  57. float quadratic_kappa = 7;
  58. // Output only. Confusion matrix of the evaluation.
  59. // Only set for the overall model evaluation, not for evaluation of a single
  60. // annotation spec.
  61. ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 8;
  62. // Output only. The annotation spec ids used for this evaluation.
  63. // Deprecated .
  64. repeated string annotation_spec_id = 9 [deprecated = true];
  65. }