12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- // Copyright 2020 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- syntax = "proto3";
- package google.cloud.automl.v1beta1;
- import "google/cloud/automl/v1beta1/classification.proto";
- option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
- option java_outer_classname = "TextSentimentProto";
- option java_package = "com.google.cloud.automl.v1beta1";
- option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
- option ruby_package = "Google::Cloud::AutoML::V1beta1";
- // Contains annotation details specific to text sentiment.
- message TextSentimentAnnotation {
- // Output only. The sentiment with the semantic, as given to the
- // [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData] when populating the dataset from which the model used
- // for the prediction had been trained.
- // The sentiment values are between 0 and
- // Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
- // with higher value meaning more positive sentiment. They are completely
- // relative, i.e. 0 means least positive sentiment and sentiment_max means
- // the most positive from the sentiments present in the train data. Therefore
- // e.g. if train data had only negative sentiment, then sentiment_max, would
- // be still negative (although least negative).
- // The sentiment shouldn't be confused with "score" or "magnitude"
- // from the previous Natural Language Sentiment Analysis API.
- int32 sentiment = 1;
- }
- // Model evaluation metrics for text sentiment problems.
- message TextSentimentEvaluationMetrics {
- // Output only. Precision.
- float precision = 1;
- // Output only. Recall.
- float recall = 2;
- // Output only. The harmonic mean of recall and precision.
- float f1_score = 3;
- // Output only. Mean absolute error. Only set for the overall model
- // evaluation, not for evaluation of a single annotation spec.
- float mean_absolute_error = 4;
- // Output only. Mean squared error. Only set for the overall model
- // evaluation, not for evaluation of a single annotation spec.
- float mean_squared_error = 5;
- // Output only. Linear weighted kappa. Only set for the overall model
- // evaluation, not for evaluation of a single annotation spec.
- float linear_kappa = 6;
- // Output only. Quadratic weighted kappa. Only set for the overall model
- // evaluation, not for evaluation of a single annotation spec.
- float quadratic_kappa = 7;
- // Output only. Confusion matrix of the evaluation.
- // Only set for the overall model evaluation, not for evaluation of a single
- // annotation spec.
- ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 8;
- // Output only. The annotation spec ids used for this evaluation.
- // Deprecated .
- repeated string annotation_spec_id = 9 [deprecated = true];
- }
|