study.proto 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. // Copyright 2022 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. syntax = "proto3";
  15. package google.cloud.aiplatform.v1;
  16. import "google/api/field_behavior.proto";
  17. import "google/api/resource.proto";
  18. import "google/protobuf/duration.proto";
  19. import "google/protobuf/struct.proto";
  20. import "google/protobuf/timestamp.proto";
  21. option csharp_namespace = "Google.Cloud.AIPlatform.V1";
  22. option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1;aiplatform";
  23. option java_multiple_files = true;
  24. option java_outer_classname = "StudyProto";
  25. option java_package = "com.google.cloud.aiplatform.v1";
  26. option php_namespace = "Google\\Cloud\\AIPlatform\\V1";
  27. option ruby_package = "Google::Cloud::AIPlatform::V1";
  28. // A message representing a Study.
  29. message Study {
  30. option (google.api.resource) = {
  31. type: "aiplatform.googleapis.com/Study"
  32. pattern: "projects/{project}/locations/{location}/studies/{study}"
  33. };
  34. // Describes the Study state.
  35. enum State {
  36. // The study state is unspecified.
  37. STATE_UNSPECIFIED = 0;
  38. // The study is active.
  39. ACTIVE = 1;
  40. // The study is stopped due to an internal error.
  41. INACTIVE = 2;
  42. // The study is done when the service exhausts the parameter search space
  43. // or max_trial_count is reached.
  44. COMPLETED = 3;
  45. }
  46. // Output only. The name of a study. The study's globally unique identifier.
  47. // Format: `projects/{project}/locations/{location}/studies/{study}`
  48. string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
  49. // Required. Describes the Study, default value is empty string.
  50. string display_name = 2 [(google.api.field_behavior) = REQUIRED];
  51. // Required. Configuration of the Study.
  52. StudySpec study_spec = 3 [(google.api.field_behavior) = REQUIRED];
  53. // Output only. The detailed state of a Study.
  54. State state = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
  55. // Output only. Time at which the study was created.
  56. google.protobuf.Timestamp create_time = 5 [(google.api.field_behavior) = OUTPUT_ONLY];
  57. // Output only. A human readable reason why the Study is inactive.
  58. // This should be empty if a study is ACTIVE or COMPLETED.
  59. string inactive_reason = 6 [(google.api.field_behavior) = OUTPUT_ONLY];
  60. }
  61. // A message representing a Trial. A Trial contains a unique set of Parameters
  62. // that has been or will be evaluated, along with the objective metrics got by
  63. // running the Trial.
  64. message Trial {
  65. option (google.api.resource) = {
  66. type: "aiplatform.googleapis.com/Trial"
  67. pattern: "projects/{project}/locations/{location}/studies/{study}/trials/{trial}"
  68. };
  69. // A message representing a parameter to be tuned.
  70. message Parameter {
  71. // Output only. The ID of the parameter. The parameter should be defined in
  72. // [StudySpec's Parameters][google.cloud.aiplatform.v1.StudySpec.parameters].
  73. string parameter_id = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
  74. // Output only. The value of the parameter.
  75. // `number_value` will be set if a parameter defined in StudySpec is
  76. // in type 'INTEGER', 'DOUBLE' or 'DISCRETE'.
  77. // `string_value` will be set if a parameter defined in StudySpec is
  78. // in type 'CATEGORICAL'.
  79. google.protobuf.Value value = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
  80. }
  81. // Describes a Trial state.
  82. enum State {
  83. // The Trial state is unspecified.
  84. STATE_UNSPECIFIED = 0;
  85. // Indicates that a specific Trial has been requested, but it has not yet
  86. // been suggested by the service.
  87. REQUESTED = 1;
  88. // Indicates that the Trial has been suggested.
  89. ACTIVE = 2;
  90. // Indicates that the Trial should stop according to the service.
  91. STOPPING = 3;
  92. // Indicates that the Trial is completed successfully.
  93. SUCCEEDED = 4;
  94. // Indicates that the Trial should not be attempted again.
  95. // The service will set a Trial to INFEASIBLE when it's done but missing
  96. // the final_measurement.
  97. INFEASIBLE = 5;
  98. }
  99. // Output only. Resource name of the Trial assigned by the service.
  100. string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
  101. // Output only. The identifier of the Trial assigned by the service.
  102. string id = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
  103. // Output only. The detailed state of the Trial.
  104. State state = 3 [(google.api.field_behavior) = OUTPUT_ONLY];
  105. // Output only. The parameters of the Trial.
  106. repeated Parameter parameters = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
  107. // Output only. The final measurement containing the objective value.
  108. Measurement final_measurement = 5 [(google.api.field_behavior) = OUTPUT_ONLY];
  109. // Output only. A list of measurements that are strictly lexicographically
  110. // ordered by their induced tuples (steps, elapsed_duration).
  111. // These are used for early stopping computations.
  112. repeated Measurement measurements = 6 [(google.api.field_behavior) = OUTPUT_ONLY];
  113. // Output only. Time when the Trial was started.
  114. google.protobuf.Timestamp start_time = 7 [(google.api.field_behavior) = OUTPUT_ONLY];
  115. // Output only. Time when the Trial's status changed to `SUCCEEDED` or `INFEASIBLE`.
  116. google.protobuf.Timestamp end_time = 8 [(google.api.field_behavior) = OUTPUT_ONLY];
  117. // Output only. The identifier of the client that originally requested this Trial.
  118. // Each client is identified by a unique client_id. When a client
  119. // asks for a suggestion, Vertex AI Vizier will assign it a Trial. The client
  120. // should evaluate the Trial, complete it, and report back to Vertex AI
  121. // Vizier. If suggestion is asked again by same client_id before the Trial is
  122. // completed, the same Trial will be returned. Multiple clients with
  123. // different client_ids can ask for suggestions simultaneously, each of them
  124. // will get their own Trial.
  125. string client_id = 9 [(google.api.field_behavior) = OUTPUT_ONLY];
  126. // Output only. A human readable string describing why the Trial is
  127. // infeasible. This is set only if Trial state is `INFEASIBLE`.
  128. string infeasible_reason = 10 [(google.api.field_behavior) = OUTPUT_ONLY];
  129. // Output only. The CustomJob name linked to the Trial.
  130. // It's set for a HyperparameterTuningJob's Trial.
  131. string custom_job = 11 [
  132. (google.api.field_behavior) = OUTPUT_ONLY,
  133. (google.api.resource_reference) = {
  134. type: "aiplatform.googleapis.com/CustomJob"
  135. }
  136. ];
  137. // Output only. URIs for accessing [interactive
  138. // shells](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell)
  139. // (one URI for each training node). Only available if this trial is part of
  140. // a [HyperparameterTuningJob][google.cloud.aiplatform.v1.HyperparameterTuningJob] and the job's
  141. // [trial_job_spec.enable_web_access][google.cloud.aiplatform.v1.CustomJobSpec.enable_web_access] field
  142. // is `true`.
  143. //
  144. // The keys are names of each node used for the trial; for example,
  145. // `workerpool0-0` for the primary node, `workerpool1-0` for the first node in
  146. // the second worker pool, and `workerpool1-1` for the second node in the
  147. // second worker pool.
  148. //
  149. // The values are the URIs for each node's interactive shell.
  150. map<string, string> web_access_uris = 12 [(google.api.field_behavior) = OUTPUT_ONLY];
  151. }
  152. // Represents specification of a Study.
  153. message StudySpec {
  154. // Represents a metric to optimize.
  155. message MetricSpec {
  156. // The available types of optimization goals.
  157. enum GoalType {
  158. // Goal Type will default to maximize.
  159. GOAL_TYPE_UNSPECIFIED = 0;
  160. // Maximize the goal metric.
  161. MAXIMIZE = 1;
  162. // Minimize the goal metric.
  163. MINIMIZE = 2;
  164. }
  165. // Required. The ID of the metric. Must not contain whitespaces and must be unique
  166. // amongst all MetricSpecs.
  167. string metric_id = 1 [(google.api.field_behavior) = REQUIRED];
  168. // Required. The optimization goal of the metric.
  169. GoalType goal = 2 [(google.api.field_behavior) = REQUIRED];
  170. }
  171. // Represents a single parameter to optimize.
  172. message ParameterSpec {
  173. // Value specification for a parameter in `DOUBLE` type.
  174. message DoubleValueSpec {
  175. // Required. Inclusive minimum value of the parameter.
  176. double min_value = 1 [(google.api.field_behavior) = REQUIRED];
  177. // Required. Inclusive maximum value of the parameter.
  178. double max_value = 2 [(google.api.field_behavior) = REQUIRED];
  179. // A default value for a `DOUBLE` parameter that is assumed to be a
  180. // relatively good starting point. Unset value signals that there is no
  181. // offered starting point.
  182. //
  183. // Currently only supported by the Vertex AI Vizier service. Not supported
  184. // by HyperparameterTuningJob or TrainingPipeline.
  185. optional double default_value = 4;
  186. }
  187. // Value specification for a parameter in `INTEGER` type.
  188. message IntegerValueSpec {
  189. // Required. Inclusive minimum value of the parameter.
  190. int64 min_value = 1 [(google.api.field_behavior) = REQUIRED];
  191. // Required. Inclusive maximum value of the parameter.
  192. int64 max_value = 2 [(google.api.field_behavior) = REQUIRED];
  193. // A default value for an `INTEGER` parameter that is assumed to be a
  194. // relatively good starting point. Unset value signals that there is no
  195. // offered starting point.
  196. //
  197. // Currently only supported by the Vertex AI Vizier service. Not supported
  198. // by HyperparameterTuningJob or TrainingPipeline.
  199. optional int64 default_value = 4;
  200. }
  201. // Value specification for a parameter in `CATEGORICAL` type.
  202. message CategoricalValueSpec {
  203. // Required. The list of possible categories.
  204. repeated string values = 1 [(google.api.field_behavior) = REQUIRED];
  205. // A default value for a `CATEGORICAL` parameter that is assumed to be a
  206. // relatively good starting point. Unset value signals that there is no
  207. // offered starting point.
  208. //
  209. // Currently only supported by the Vertex AI Vizier service. Not supported
  210. // by HyperparameterTuningJob or TrainingPipeline.
  211. optional string default_value = 3;
  212. }
  213. // Value specification for a parameter in `DISCRETE` type.
  214. message DiscreteValueSpec {
  215. // Required. A list of possible values.
  216. // The list should be in increasing order and at least 1e-10 apart.
  217. // For instance, this parameter might have possible settings of 1.5, 2.5,
  218. // and 4.0. This list should not contain more than 1,000 values.
  219. repeated double values = 1 [(google.api.field_behavior) = REQUIRED];
  220. // A default value for a `DISCRETE` parameter that is assumed to be a
  221. // relatively good starting point. Unset value signals that there is no
  222. // offered starting point. It automatically rounds to the
  223. // nearest feasible discrete point.
  224. //
  225. // Currently only supported by the Vertex AI Vizier service. Not supported
  226. // by HyperparameterTuningJob or TrainingPipeline.
  227. optional double default_value = 3;
  228. }
  229. // Represents a parameter spec with condition from its parent parameter.
  230. message ConditionalParameterSpec {
  231. // Represents the spec to match discrete values from parent parameter.
  232. message DiscreteValueCondition {
  233. // Required. Matches values of the parent parameter of 'DISCRETE' type.
  234. // All values must exist in `discrete_value_spec` of parent parameter.
  235. //
  236. // The Epsilon of the value matching is 1e-10.
  237. repeated double values = 1 [(google.api.field_behavior) = REQUIRED];
  238. }
  239. // Represents the spec to match integer values from parent parameter.
  240. message IntValueCondition {
  241. // Required. Matches values of the parent parameter of 'INTEGER' type.
  242. // All values must lie in `integer_value_spec` of parent parameter.
  243. repeated int64 values = 1 [(google.api.field_behavior) = REQUIRED];
  244. }
  245. // Represents the spec to match categorical values from parent parameter.
  246. message CategoricalValueCondition {
  247. // Required. Matches values of the parent parameter of 'CATEGORICAL' type.
  248. // All values must exist in `categorical_value_spec` of parent
  249. // parameter.
  250. repeated string values = 1 [(google.api.field_behavior) = REQUIRED];
  251. }
  252. // A set of parameter values from the parent ParameterSpec's feasible
  253. // space.
  254. oneof parent_value_condition {
  255. // The spec for matching values from a parent parameter of
  256. // `DISCRETE` type.
  257. DiscreteValueCondition parent_discrete_values = 2;
  258. // The spec for matching values from a parent parameter of `INTEGER`
  259. // type.
  260. IntValueCondition parent_int_values = 3;
  261. // The spec for matching values from a parent parameter of
  262. // `CATEGORICAL` type.
  263. CategoricalValueCondition parent_categorical_values = 4;
  264. }
  265. // Required. The spec for a conditional parameter.
  266. ParameterSpec parameter_spec = 1 [(google.api.field_behavior) = REQUIRED];
  267. }
  268. // The type of scaling that should be applied to this parameter.
  269. enum ScaleType {
  270. // By default, no scaling is applied.
  271. SCALE_TYPE_UNSPECIFIED = 0;
  272. // Scales the feasible space to (0, 1) linearly.
  273. UNIT_LINEAR_SCALE = 1;
  274. // Scales the feasible space logarithmically to (0, 1). The entire
  275. // feasible space must be strictly positive.
  276. UNIT_LOG_SCALE = 2;
  277. // Scales the feasible space "reverse" logarithmically to (0, 1). The
  278. // result is that values close to the top of the feasible space are spread
  279. // out more than points near the bottom. The entire feasible space must be
  280. // strictly positive.
  281. UNIT_REVERSE_LOG_SCALE = 3;
  282. }
  283. oneof parameter_value_spec {
  284. // The value spec for a 'DOUBLE' parameter.
  285. DoubleValueSpec double_value_spec = 2;
  286. // The value spec for an 'INTEGER' parameter.
  287. IntegerValueSpec integer_value_spec = 3;
  288. // The value spec for a 'CATEGORICAL' parameter.
  289. CategoricalValueSpec categorical_value_spec = 4;
  290. // The value spec for a 'DISCRETE' parameter.
  291. DiscreteValueSpec discrete_value_spec = 5;
  292. }
  293. // Required. The ID of the parameter. Must not contain whitespaces and must be unique
  294. // amongst all ParameterSpecs.
  295. string parameter_id = 1 [(google.api.field_behavior) = REQUIRED];
  296. // How the parameter should be scaled.
  297. // Leave unset for `CATEGORICAL` parameters.
  298. ScaleType scale_type = 6;
  299. // A conditional parameter node is active if the parameter's value matches
  300. // the conditional node's parent_value_condition.
  301. //
  302. // If two items in conditional_parameter_specs have the same name, they
  303. // must have disjoint parent_value_condition.
  304. repeated ConditionalParameterSpec conditional_parameter_specs = 10;
  305. }
  306. // The decay curve automated stopping rule builds a Gaussian Process
  307. // Regressor to predict the final objective value of a Trial based on the
  308. // already completed Trials and the intermediate measurements of the current
  309. // Trial. Early stopping is requested for the current Trial if there is very
  310. // low probability to exceed the optimal value found so far.
  311. message DecayCurveAutomatedStoppingSpec {
  312. // True if [Measurement.elapsed_duration][google.cloud.aiplatform.v1.Measurement.elapsed_duration] is used as the x-axis of each
  313. // Trials Decay Curve. Otherwise, [Measurement.step_count][google.cloud.aiplatform.v1.Measurement.step_count] will be used
  314. // as the x-axis.
  315. bool use_elapsed_duration = 1;
  316. }
  317. // The median automated stopping rule stops a pending Trial if the Trial's
  318. // best objective_value is strictly below the median 'performance' of all
  319. // completed Trials reported up to the Trial's last measurement.
  320. // Currently, 'performance' refers to the running average of the objective
  321. // values reported by the Trial in each measurement.
  322. message MedianAutomatedStoppingSpec {
  323. // True if median automated stopping rule applies on
  324. // [Measurement.elapsed_duration][google.cloud.aiplatform.v1.Measurement.elapsed_duration]. It means that elapsed_duration
  325. // field of latest measurement of current Trial is used to compute median
  326. // objective value for each completed Trials.
  327. bool use_elapsed_duration = 1;
  328. }
  329. // Configuration for ConvexAutomatedStoppingSpec.
  330. // When there are enough completed trials (configured by
  331. // min_measurement_count), for pending trials with enough measurements and
  332. // steps, the policy first computes an overestimate of the objective value at
  333. // max_num_steps according to the slope of the incomplete objective value
  334. // curve. No prediction can be made if the curve is completely flat. If the
  335. // overestimation is worse than the best objective value of the completed
  336. // trials, this pending trial will be early-stopped, but a last measurement
  337. // will be added to the pending trial with max_num_steps and predicted
  338. // objective value from the autoregression model.
  339. message ConvexAutomatedStoppingSpec {
  340. // Steps used in predicting the final objective for early stopped trials. In
  341. // general, it's set to be the same as the defined steps in training /
  342. // tuning. If not defined, it will learn it from the completed trials. When
  343. // use_steps is false, this field is set to the maximum elapsed seconds.
  344. int64 max_step_count = 1;
  345. // Minimum number of steps for a trial to complete. Trials which do not have
  346. // a measurement with step_count > min_step_count won't be considered for
  347. // early stopping. It's ok to set it to 0, and a trial can be early stopped
  348. // at any stage. By default, min_step_count is set to be one-tenth of the
  349. // max_step_count.
  350. // When use_elapsed_duration is true, this field is set to the minimum
  351. // elapsed seconds.
  352. int64 min_step_count = 2;
  353. // The minimal number of measurements in a Trial. Early-stopping checks
  354. // will not trigger if less than min_measurement_count+1 completed trials or
  355. // pending trials with less than min_measurement_count measurements. If not
  356. // defined, the default value is 5.
  357. int64 min_measurement_count = 3;
  358. // The hyper-parameter name used in the tuning job that stands for learning
  359. // rate. Leave it blank if learning rate is not in a parameter in tuning.
  360. // The learning_rate is used to estimate the objective value of the ongoing
  361. // trial.
  362. string learning_rate_parameter_name = 4;
  363. // This bool determines whether or not the rule is applied based on
  364. // elapsed_secs or steps. If use_elapsed_duration==false, the early stopping
  365. // decision is made according to the predicted objective values according to
  366. // the target steps. If use_elapsed_duration==true, elapsed_secs is used
  367. // instead of steps. Also, in this case, the parameters max_num_steps and
  368. // min_num_steps are overloaded to contain max_elapsed_seconds and
  369. // min_elapsed_seconds.
  370. bool use_elapsed_duration = 5;
  371. }
  372. // The available search algorithms for the Study.
  373. enum Algorithm {
  374. // The default algorithm used by Vertex AI for [hyperparameter
  375. // tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview)
  376. // and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier).
  377. ALGORITHM_UNSPECIFIED = 0;
  378. // Simple grid search within the feasible space. To use grid search,
  379. // all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`.
  380. GRID_SEARCH = 2;
  381. // Simple random search within the feasible space.
  382. RANDOM_SEARCH = 3;
  383. }
  384. // Describes the noise level of the repeated observations.
  385. //
  386. // "Noisy" means that the repeated observations with the same Trial parameters
  387. // may lead to different metric evaluations.
  388. enum ObservationNoise {
  389. // The default noise level chosen by Vertex AI.
  390. OBSERVATION_NOISE_UNSPECIFIED = 0;
  391. // Vertex AI assumes that the objective function is (nearly)
  392. // perfectly reproducible, and will never repeat the same Trial
  393. // parameters.
  394. LOW = 1;
  395. // Vertex AI will estimate the amount of noise in metric
  396. // evaluations, it may repeat the same Trial parameters more than once.
  397. HIGH = 2;
  398. }
  399. // This indicates which measurement to use if/when the service automatically
  400. // selects the final measurement from previously reported intermediate
  401. // measurements. Choose this based on two considerations:
  402. // A) Do you expect your measurements to monotonically improve?
  403. // If so, choose LAST_MEASUREMENT. On the other hand, if you're in a
  404. // situation where your system can "over-train" and you expect the
  405. // performance to get better for a while but then start declining,
  406. // choose BEST_MEASUREMENT.
  407. // B) Are your measurements significantly noisy and/or irreproducible?
  408. // If so, BEST_MEASUREMENT will tend to be over-optimistic, and it
  409. // may be better to choose LAST_MEASUREMENT.
  410. // If both or neither of (A) and (B) apply, it doesn't matter which
  411. // selection type is chosen.
  412. enum MeasurementSelectionType {
  413. // Will be treated as LAST_MEASUREMENT.
  414. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0;
  415. // Use the last measurement reported.
  416. LAST_MEASUREMENT = 1;
  417. // Use the best measurement reported.
  418. BEST_MEASUREMENT = 2;
  419. }
  420. oneof automated_stopping_spec {
  421. // The automated early stopping spec using decay curve rule.
  422. DecayCurveAutomatedStoppingSpec decay_curve_stopping_spec = 4;
  423. // The automated early stopping spec using median rule.
  424. MedianAutomatedStoppingSpec median_automated_stopping_spec = 5;
  425. // The automated early stopping spec using convex stopping rule.
  426. ConvexAutomatedStoppingSpec convex_automated_stopping_spec = 9;
  427. }
  428. // Required. Metric specs for the Study.
  429. repeated MetricSpec metrics = 1 [(google.api.field_behavior) = REQUIRED];
  430. // Required. The set of parameters to tune.
  431. repeated ParameterSpec parameters = 2 [(google.api.field_behavior) = REQUIRED];
  432. // The search algorithm specified for the Study.
  433. Algorithm algorithm = 3;
  434. // The observation noise level of the study.
  435. // Currently only supported by the Vertex AI Vizier service. Not supported by
  436. // HyperparameterTuningJob or TrainingPipeline.
  437. ObservationNoise observation_noise = 6;
  438. // Describe which measurement selection type will be used
  439. MeasurementSelectionType measurement_selection_type = 7;
  440. }
  441. // A message representing a Measurement of a Trial. A Measurement contains
  442. // the Metrics got by executing a Trial using suggested hyperparameter
  443. // values.
  444. message Measurement {
  445. // A message representing a metric in the measurement.
  446. message Metric {
  447. // Output only. The ID of the Metric. The Metric should be defined in
  448. // [StudySpec's Metrics][google.cloud.aiplatform.v1.StudySpec.metrics].
  449. string metric_id = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
  450. // Output only. The value for this metric.
  451. double value = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
  452. }
  453. // Output only. Time that the Trial has been running at the point of this Measurement.
  454. google.protobuf.Duration elapsed_duration = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
  455. // Output only. The number of steps the machine learning model has been trained for.
  456. // Must be non-negative.
  457. int64 step_count = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
  458. // Output only. A list of metrics got by evaluating the objective functions using suggested
  459. // Parameter values.
  460. repeated Metric metrics = 3 [(google.api.field_behavior) = OUTPUT_ONLY];
  461. }